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1 Introduction

Intelligent Unmanned Vehicle (IUV) are the important component of Intelligent Transportation
System (ITS). The software algorithm modules of an unmanned vehicle mainly include perception,
localization, prediction, routing, planning and control.

Feedback control is the basic algorithmic module of an unmanned vehicle and includes two
parts: lateral control and longitudinal control. The lateral control is mainly used for the control
of the steering wheel of the vehicle, while the longitudinal control is responsible for the control
of the throttle and brake of the vehicle. The lateral control and longitudinal control should work
together to ensure that the unmanned vehicle moves according to the predetermined reference
trajectory.

Specifically, the lateral control performs tracking control according to the path, curvature and
other information given by the upper layer motion planning to reduce the tracking error, ensure
the stability and comfort of the vehicle.

In this work, a high precision kinematic lane following control method is proposed to solve the
lateral control problem. At the end, the proposed techniques for vehicle motion control are tested
in a virtual environment (SILAB).

1.1 Motivation

Intelligent unmanned vehicles may be the most significant innovation in the transportation since
automobiles were first invented. Although intelligent unmanned cars and trucks are still in their
infancy, they can fundamentally change the way how people and goods move around — with
profound implications for safety, lifestyle and environment.

In general terms, the benefits of IUVs are reflected in the three following categories:

• Safety
According to the Federal Statistical Office in Germany, around 2.4 million traffic
accidents were recorded in 2012[1]. A total of 362,993 accidents involving personal
injury are attributable to misconduct by the driver. By use of self-driving connected
vehicles, these accidents can be avoided. The vehicles are always informed about
the behavior of other vehicles by the communication with each other and therefore
making the best decisions.
In addition to the advantage of connected communication, autonomous vehicles
would not suffer from humanly issues, such as getting distracted, being drunk,
running red lights or texting while driving. so there is already potential for increased
safety over human drivers.
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1 Introduction

• Lifestyle
By use of a self-driving connected vehicle, passenger can effectively avoid traffic
jam and congestion. Reasons for this are the lower number of traffic accidents and
the more accurate real-time traffic reports.
In addition, self-driving vehicles can help people who are not allowed to drive to
enjoy the convenient mobility.
The use of self-driving vehicles will also allow passenger to use the travel time
productively. Passengers could read the morning paper or prepare the upcoming
meeting on the way to work. During the travel time, the vehicles could also used
as entertainment or communication centers on request.

• Economics
Self-driving vehicles have an enormous potential to reduce emission and optimize
the energy consumption. Connected autonomous vehicles are informed of the
traffic conditions and they can make optimized decisions about actions, like braking
and accelerating, regarding energy consumption.

In summary, intelligent unmanned vehicles have broad applications prospects and development
space in many fields. Nowadays more and more universities and research institutes are
investing a lot of capital and resources to carry out the research work on IUVs. With the
rapid development of computer science, sensor system, automatic control and localization and
positioning technology, the research on intelligent unmanned vehicles will continue to move
towards feasibility and practicability. The related research results will make a great contribution
to the world and civilization.

1.2 Objective of the Thesis

The System for Teleoperated Road Marking (SToRM) is a project of the Chair pf Automotive
Technology (FTM) at TUM. The project SToRM aims to develop a road marking machine, which
uses deep learning algorithms[2] to detect the lane markings and a lateral control algorithm to
let the vehicle to drive itself along the lane. The road marking machine can print the road lane
marking autonomously, which saves effort and time of road-workers.

Figure 1.1: Lane marking machine in application scenario
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The primary objective of this thesis is the development of lateral control algorithms which
compute the steering angle automatically. The road marking machine moves slowly, so there
is no need to build a dynamic model for it. The details of the kinematic model of road marking
machine are in section 3.1. However, the road marking machine has to move along the lane
accurately to print the lane marking. Therefore, the accuracy of the control algorithm is of
significant importance in this work.

1.3 Structure of the Thesis

The first chapter gives a short introduction to the motivation of this work. After that, the objective
and structure of the thesis are presented.

The second chapter begins with a description of the state of the art relevant to the objective
of this thesis which includes an introduction into autonomous driving and its components. The
project SToRM is also introduced in this chapter. Then, many state-of-the-art path following
control methods are presented. In addition to the principles of control algorithms, some research
states of these methods are also given.

Next, the vehicle model used in this work is introduced. The vehicle model is a nonlinear system.
Therefore, the kinematic model is linearized and discussed. At the end of this chapter, the
operating system and the software applied in the project are introduced.

Explaining of the simulation environment and the background are part of the fourth chapter. Next,
the implementation of control methods is also presented. A method for combined controller
which is designed to increase the accuracy of the control is described in the last section.

Lastly, in the final chapter, a discussion about this work, a summary and potential improvements
for further works regarding the presented lateral control approach are given.

The described structure of this thesis is illustrated in figure 1.2.
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Figure 1.2: Structure of this thesis
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2 State of the Art

Intelligent unmanned vehicles are the significant component of future intelligent transport systems
and the path tracking control occupies an important position in autonomous driving technolo-
gies. This section examines the hardware and software module, which are fundamental for
autonomous driving. Next, a variety of state-of-the-art lateral control methods are introduced.

2.1 Autonomous Driving

In recent years, there has been increasing interest in technology of autonomous driving. Nowa-
days, the different categories of autonomous vehicles are reflected in the six levels of automation
pictured in Figure 2.1. In the case of semi-automatic vehicles (level 3 and level 4), the system
assumes the task of longitudinal and lateral control. However, the human driver must supervise
the system and always be prepared to completely take over the vehicle control. On the other
hand, in a fully-automated vehicle, the human driver is not required to supervise the system and
is allowed to perform additional activities[3].

Figure 2.1: The six levels of vehicle autonomy[4]

The development of autonomous driving technology has been accelerated in the past years
primarily through the Defense Advanced Research Projects Agency (DARPA) challenge. The
goal of this competition to let the vehicle move autonomously to the destination without any
human operation.
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Research in Germany

The research of autonomous driving began in Germany in the 1980s. The Bundeswehr University
Munich developed the first car-like robot VaMoRs, which can move autonomously in a closed
route. After that, the Bundeswehr University Munich worked together with Daimler-Benz to start
the new project PROMETHEUS and to research on the feasibility of autonomous driving. The
results of the project show, the two test vehicles Vita II and VaMP are already able to move
autonomously from Paris to Lille at high speed and with many lane changes[5]. Nowadays, the
Bundeswehr University Munich is researching on locating the autonomous robots in buildings.
This research is also very important for the development of autonomous driving.

Figure 2.2: VaMP and Audi Q7[6]

The FTM at Technical University of Munich developed a test vehicle for the special research field
— human-like cognitive perception. The test vehicle is based on an Audi Q7, which is equipped
with a variety of sensors like lidar, radar and camera. The cooperative ability of vehicles was
demonstrated using vehicle-vehicle communication. It is worth mentioning that the Q7 is also
the test vehicle in this work.

Research in the World

In the USA, Carnegie Mellon University (CMU) in Pittsburgh researches in the autonomous
driving for decades. The test vehicle Sandstorm of CMU traveled autonomously the longest
distance over all participants at the DARPA challenge 2004. CMU won the Urban challenge
2007 with test vehicle Boss, which is based on a Chevy Tahoe.

Figure 2.3: Sandstorm, Boss and Stanley[7]

The Stanford University plays has an enormous result in autonomous driving. At DARPA
challenge 2005, the Stanford University won the competition with their test vehicle Stanley. The
path following algorithm of Stanley is also implemented and applied in this work[6].
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2.2 Modules of Autonomous Vehicles

This section has been divided into two parts. The first part deals with the hardware modules of
IUVs and the second part of this section examines the software modules, which have received
considerable critical attention over these years.

2.2.1 Hardware Module

The sensors of IUVs mainly include Radar, Lidar, Camera and Ultrasound. Figure 2.4 shows the
different functions and range of various sensors.

Figure 2.4: The sensors of an IUV[8]

However, each sensor has its own advantages and suitable scenarios. Table 2.1 shows the
performance of these commonly used sensors in different applications scenarios. An IUV
usually combines the advantages of different sensors with sensor data fusion to optimize its
performance.

Table 2.1: Comparison and Evaluation of sensor system

Sensor Radar Lidar Mono Camera Stereo Camera

Range ++ 0 0 0
Opening angle 0 ++ + +
Accuracy of distance + ++ 0 +
Accuracy of velocity ++ / / /

Width of object / ++ ++ ++
Length of object 0 + + +
Height of object / / + +

In this work, because there is no need to measure the distance to other objects in the application
scenario, only a camera is used to detect the line. After the lane detection, the process module
in section 2.2.2 calculates the curvature and other information of the path. The control module in
section 2.3 computes the steering angle in real time to let the vehicle move autonomously along
the path.
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2 State of the Art

2.2.2 Software Module

An autonomous vehicle is a highly complex integrated system, which involves many high-tech
hardware and software modules. Just like a human driver, an autonomous vehicle uses different
sensors to perceive other objects on the street. After data sensor fusion, a reference trajectory
will be planned. The control module is responsible for the control of the throttle, brake and
steering angle and performs tracking control according to the path, curvature and other sensor
information. Figure 2.5 shows the software module structure of an autonomous vehicle.

Figure 2.5: The software architecture of an autonomous vehicle[9]

Perception and Localization

The perception layer is the sensory system of an IUV, just like human eyes and ears. Envi-
ronmental perception and localization are the basic premises for IUVs. The accuracy of the
environmental perception will directly affect the operation of the IUV. In a ITS, an IUV has to
sense the environment around the vehicle through sensors, and then analyze and process the
sensor data to extract the vehicle environmental and status information.

Planning and Decision

The planning and decision layer is the brain of an IUV. By use of provided information from
the perception layer, the planning and decision layer plans a rational path after calculation and
gives the lower layer a control signal. This layer consists of two parts, they are path planning
and decision module. The path planning chooses the rational path while the decision module
determines how to drive along the path.

Motion Control

Motion control is the actuator of an IUV. Details of the state-of-the-art motion control are
introduced in the subsection 2.3.
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2 State of the Art

2.3 Path-Tracking Control Method

As a key issue in the research of IUV, automatic control has an enormous research value.
The main task of an automatic control module is the generation of control signals from vehicle
position, vehicle pose from the planning module to let the vehicle move autonomously and
track desired path quickly and accurately. Commonly, the vehicle motion control can be divided
into lateral control and longitudinal control. Lateral control is the control of the vehicle steering
system, performed by controlling the steering angle of the IUV to achieve the tracking of the
desired path.

Figure 2.6: A driver-vehicle-environment control loop [10]

Figure 2.6 shows a driver-vehicle-environment control loop. Just like the driver model, au-
tonomous driving model in Figure 2.7 also has a perception and an information procession
module. A perception module helps autonomous vehicle to measure its pose and generate
trajectories. According to the reference trajectory, a lateral controller can calculate a steering
angle, which affects vehicle pose and position.

Figure 2.7: A combined lateral and longitudinal control loop[11]

The path tracking controller can be roughly separated into 3 categories: controllers based on the
feedback, the geometric controllers and controllers based on models.
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2 State of the Art

2.3.1 Feedback-based Control

Model-free control is a traditional control algorithm. The model-free controller does not take the
characteristics of the vehicle model into consideration. For this reason, the model-free algorithm
is less robust compared to the model-based control and cannot perform effective tracking control
at high speeds.

PID Control

Proportion Integration Differentiation (PID) controller is a widely used linear model-free controller
in engineering and industry.

As shown in the block diagram in the figure 2.8, a PID controller uses lateral error as input,
which is calculated from the measurements of vehicle position and the nearest point on the
desired path. The control value is the steering angle, which has a significant influence on vehicle
position.

The algorithm of the PID control is uncomplicated, an advantage is that this control method does
not need a vehicle model. The control parameters can be obtained via trial and error, but need
significant trail work and are tremendously sensitive to the change of vehicle parameters. Above
all, a PID controller is easy to implement and has great robustness[12].

Figure 2.8: A PID block diagram of automatic steering system[13]

A PID controller calculates an error value e(t) as the difference between a desired Set Point (SP)
and a measured Process Variable (PV) and allies a correction based on proportional, integral
and derivative terms. As shown in the block diagram 2.9, the controller attempts to minimize the
error by adjustment of a control variable u(t) to a new value determined by a weighted sum of
the control terms.

The overall control function is

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ+ Kd
de(t)

dt
, (2.1)

where e(t) is the difference between the desired setpoint and the measured process variable.
For the steering control, e(t) can be the lateral distance between vehicle rear axle and desired
path point or the angle between the heading of the vehicle and the heading of the desired path.

10



2 State of the Art

Figure 2.9: A block diagram of a PID controller in a feedback loop[14]

In the equation 5.2 and figure 2.9, the three terms have their own specification and use:

• P: outputs a value that is in direct linear proportion to the size of the error value
e(t). A great proportional gain factor kp causes a rapid response. However, it
requires an error to generate the proportional response. If there is no error, there
is no corrective response.

• I: accounts for past values of error value e(t) and integrates them over time to
produce I term. If there is a residual error after the application of P control, the
I term seeks to eliminate the residual error by adding a control effect due to the
historic cumulative value of the error.

• D: estimates of the future trend of error value e(t), based on its current rate of
change. It is effectively seeking to reduce the effect of the error by exerting a
control influence generated by the rate of error change. The more rapid the change,
the greater the controlling or dampening effect.

Furthermore, there are nowadays many state-of-the-art methods, which are applied in the
traditional PID control.

In 2009, Riccardo Marino et al.[15] from the University of Rome Tor Vergata designed a nested
PID steering control in vision based autonomous vehicles. The external control loop computes
the yaw rate reference, using a PID control with a double integral action based on the lateral
offset to filter out the disturbances on the curvature. Meanwhile, the internal control loop
performs the steering control based on the yaw rate tracking error to improve the vehicle steering
dynamics. An advantage of the nested PID steering control is reduction of cost. Once there is
no need to measure the lateral velocity and acceleration, the cost of the relevant sensors can be
saved.

In 2014, Behrooz Mashadi el al.[13] from the Iran University of Science and Technology created
a driver model to apply the adaptive PID control method. They used the genetic algorithm to
optimize the control parameters intelligently. The experiments proved that this driver model with
adaptive PID controller has a extremely strong robustness under different road conditions.
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Stanley Control

The Stanley method, also called front wheel feedback, is the path tracking approach used by
Stanford University’s autonomous vehicle entry in the DARPA Grand Challenge, Stanley[16].
The Stanley controller is a complex control system, consisting of a feed-forward control based
on path curvature and a PID control. Figure 2.10 illustrates the geometric relationship of the
control parameters.

Figure 2.10: Stanley method geometry[17]

The Stanley method is a nonlinear feedback function of the cross track error e, measured from
the center of the front axle to the nearest path point (px , py) and boosts exponential convergence.
Co-locating the point of control with the steered front wheel allows for an intuitive control law,
where the first term simply keeps the wheels aligned with the given path by correctly the steering
angle δ with the heading error

θe = θ − θp, (2.2)

where θ is the heading of the vehicle and θp is the heading of the path at (px , py). The resulting
steering control law is given as

δ(t) = θe(t) + tan−1
�ke(t)

vx(t)

�

, (2.3)

where k is a gain parameter. When e is non-zero, the second term adjusts δ such that the
intended trajectory intersects the path tangent from (px , py) of kv(t) units from the front axle. It
is clear that the desired effect is achieved with this control law: As e increases, the wheels are
steering greater towards the path.

Above all, Stanley method is a nonlinear PID control method which represents the steering angle
of the front axle with a feedback function using lateral deviation. This nonlinear controller can
converge lateral deviation quickly and smoothly[18].
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2.3.2 Geometry-based Control

The geometric controller makes use of the geometric relationship between the vehicle model
and the tracked path to calculate the front wheel’s steering angle, which is the most popular
method for the practical autonomous vehicles because of its simple implementation and real-time
calculations.[19]

Figure 2.11: Geometric Single-Track Model[17]

A common simplification of an Ackerman steered vehicle used for geometric path tracking is the
bicycle model[17]. Section 3.1.1 includes a detailed discussion of Ackerman steering and the
kinematics of the single-track model. Figure 2.11 shows the simple geometric relationship:

tan(δ) =
L
R

, (2.4)

where δ is the steering angle of the front wheel, L is the distance between the front axle and
rear axle (wheelbase) and R is the radius of the circle that the rear axle will travel along at the
given steering angle. This geometric model approximates the motion of a car reasonably well at
low speeds and moderate steering angles.

Pure Pursuit Control

The first geometric controller used in the autonomous vehicle is Pure Pursuit. Pure Pursuit was
first employed to control a vehicle to follow the road center[20]. The final results show that the
Pure Pursuit controller could control the vehicle to track the lane center accurately. However, its
performance wholly depends on the selection of the look-ahead distance Ld .

The Pure Pursuit method consists of geometrically calculating the curvature of a circular arc that
connects the rear axle location to a goal point on the path ahead of the vehicle.[17] The goal
point is determined at a look-ahead distance Ld from the current rear axle position to the desired
path. The goal point (gx , g y) is illustrated in Figure 2.12. The vehicle’s steering angle δ can be
determined using only the goal point location and the angle α between the vehicle’s heading
vector and the look-ahead vector.

13



2 State of the Art

Figure 2.12: Pure Pursuit Method Geometry[17]

The curvature of the circle is given by

κ=
2sin(α)

Ld
. (2.5)

For a vehicle speed vr , the commanded heading rate is

ω=
2vr sin(α)

Ld
. (2.6)

If the angle α cannot be directly computed from a camera, it can be expressed in terms of the
inertial coordinate system. Consider the configuration (xr , yr ,θ)T and the points on the path,
(gx .g y), such that ||(gx , g y)− (xr , yr)||= L[21]. The α is given by

α= arctan(
g y − yr

gx − xr
)− θ . (2.7)

By use of the geometric single-track model of an Ackerman steered vehicle, the steering angle
can be written as

δ = tan−1(κL). (2.8)

Using Eq.2.4 and 2.6, the steering angle is given as

δ(t) = tan−1(
2L sin(α(t)

Ld
), (2.9)

L is the wheel base and Ld is the look-ahead distance.

In 2003, Rajamani et al.[22] developed a look-ahead based input output feedback linearization
lateral control method for the nonlinear geometric model of vehicles. The results show that the
lateral control strategy based on look-ahead can efficiently improve the tracking performance of
a vehicle.

14



2 State of the Art

2.3.3 Model-based Control

The model-based controller is designed to consider a kinematic or dynamic model. Some
controllers can take both of them into consideration. Simplifying the vehicle system model to
a kinematic bicycle model is a common approximation used for robot motion planning, simple
vehicle analysis and (for the geometric methods) deriving intuitive control laws. This section
presents the control methods using kinematic and/or dynamic bicycle models. The single-track
model and its state-space representation will be introduced in section 3.1.

Optimal Control

The theory of optimal control is aimed to operate a dynamic system at minimum cost. One of the
main aspects of the method is that the solution is provided by the Linear-Quadratic Regulator
(LQR). The LQR is an important solution to the Linear-Quadratic-Gaussian (LQG) problem.

The cost function is often defined as the sum of the derivation of key measurements, like the
lateral distance of the vehicle from their desired value. The cost function can be expressed as

J =
N−1
∑

τ=0

(x T
τQxτ + uT

τRuτ + 2x T
τNuτ) + x T

NQ f xN , (2.10)

Q is a diagonal weighting matrix with an entry for each state corresponding to the performance
aspects contributing to the cost function and R is the weighting value corresponding to the control
effort contributing to the cost function.

The optimal control sequence minimizing the performance index is given by

uτ = −Fτxτ (2.11)

with

Fτ = (R+ BT Pτ+1B)−1(BT Pτ+1A+ N T ). (2.12)

Pτ−1 is determined iteratively backwards in time by the dynamic Riccati equation

Pτ−1 = AT PτA− (AT PτB + N)(R+ BT PτB)−1(BT pτA+ N T ) +Q. (2.13)

The solution to the dynamic Riccati equation is omitted here since it is not specific to path
tracking[17]. There are also many software packages available to perform the task.

LQR is an optimal control regulator that better tracks a reference trajectory compared to the
traditional controllers such as PID.

In 2013, Codeiro et al.[23] used bio-inspired LQR approach to let an off-road robotic vehicle
to track the desired path. The results showed, a bio-inspired reference shaping approach can
enhance the lateral tracking performance efficiently.
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Model Predictive Control

Model Predictive Control (MPC) is an advanced method of process control that is used to control
a process while satisfying a set of constraints. The main advantage of MPC is the fact that it
allows the current timeslot to be optimized while keeping future timeslots in account. MPC has
also the ability to anticipate future events and can take control actions accordingly.

Figure 2.13: A discrete model predictive control scheme[24]

Figure 2.13 shows a scheme of the theory behind MPC. MPC is based on iterative, finite-horizon
optimization of a plant model. At time t the current plant state is sampled and a cost minimizing
control strategy is computed for a relatively short time horizon in the future: [t, t+T ]. Specifically,
an online calculation is used to explore state trajectories that emanate from the current state and
find a cost-minimizing control strategy until time t + T .

MPC is nowadays the most advanced control method. It is also applied by many autonomous
driving research institutes and companies. Baidu (a company from China) open sourced the
control module of their autonomous vehicle Apollo in GitHub[25]. The control module includes
MPC and is implemented in C++.

The main differences between MPC and LQR are that LQR optimizes in a fixed time window
(horizon) whereas MPC optimizes in a receding time window and that a new solution is computed
often whereas LQR uses the single (optimal) solution for the whole time horizon. Therefore,
MPC typically solves the optimization problem in smaller time windows than the whole horizon
and hence may obtain a suboptimal solution. In 2017, Jezierski el al.[26] performed experiments
to compare LQR and MPC algorithms of a inverted pendulum. The results show that the LQR
algorithm is performing better in the control task with the disturbance rejection, while the MPC
controller gives better results in the case of the trajectory tracking task.

In 2016, Zhijun Li et al.[27] used a MPC scheme in corporating neural-dynamic optimization
to achieve trajectory tracking of nonholonomic mobile robots. Compared to the existing MPC,
which requires repeatedly calculating the Hessian matrix of the Langragian and then solves
a quadratic program. The results show, the computation complexity reaches O(n3), while the
proposed neural-dynamic optimization contains O(n2) operations.
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Additionally, there are a variety of other modern lateral control methods.

Adaptive Control

In 2004, Netto, Chaib and Mammar[28] applied the self-tuning regulator to solve the vehicle
lateral control problem. The dynamic singel-track model takes unknown wind forces and road
curvature into consideration. The simulations, which are carried out with a nonlinear model,
confirm the efficacy of the controller and its robustness.

In 2007, Montemerlo el al.[29] from Stanford University developed adaptive control method,
which has integrated learning module to tune the control parameter. They applied the control
algorithm in the test vehicle Junior. It won the 2.Prize in the DARPA challege in 2007.

Sliding-Mode Control

In 2017, Lei Tan et al.[30] designed a sliding-mode controller for the active four-wheel steering
system, which both side slip angle and yaw rate can trace the given reference trajectories.
Simulation results show that, compared to the front wheel steering and active four-wheel steering
vehicle based on linear quadratic control law, the proposed sliding-mode control strategy can
effectively deal with disturbances, and improve handling stability of the vehicle.

Fuzzy Control

In 2006, Mohamed et al.[31] used fuzzy logic control system to steer autonomously a two-axle
vehicle. Two fuzzy modules in the steering controller are designed to meet the basic driving
requirement: Target Steering Fuzzy Module (TSF) and Collsion Avoidance Steering Fuzzy
Module (CASF). The first module steers the vehicle toward the target by monitoring the steering
angle and the angle to the target. The objective of the second module is to avoid collisions with
static and dynamic obstacles.
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In this chapter, all the relevant methods and software will be introduced, which play a significant
role to the development and testing of the lateral controller. In the section 3.1, the used vehicle
model will be introduced. There are two vehicle models, namely kinematic bicycle model and
dynamic bicycle model. In the section 3.2,

3.1 Vehicle Model

In this section, some commonly used models of mobility of car-like robots will be introduced.
Such models are widely use in motion planning and control method to approximate a vehicle’s
behavior in response to control actions in relevant operating conditions[21]. A high-precision
model may accurately reflect the response of the vehicle, but the added detail may lead to
the algorithm problems of planning and control. This is a conflict between the accuracy of the
selected vehicle model and the difficulty of the algorithm problems. This section provides an
overview of general modeling, namely kinematic bicycle model and dynamic bicycle model.

3.1.1 Kinematic Single-Track Model

In the most basic model of practical use, a car consists of two wheels connected by a rigid
link and is restricted to move in a plane. It is assumed that the wheels don’t slip at the contact
point, but rotate freely around the axes of rotation. The front wheel in Figure3.1 has a degree of
freedom, which allows the front wheel to rotate around an axis normal to the plane of motion[32].
This is to model steering.

Figure 3.1: Front wheel of a car-like robot[17]

These two modeling features reflect the experience, what the most passengers have: the car is
unable to move laterally without simultaneously moving forward. More formally, the limitation on
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maneuverability is discussed as a nonholonomic constraint[33]. The nonholonomic constraint is
expressed as a differential constraint on the motion of the car.

The following is a derivation of the differential constraint in Cartesian coordinate system for the
configuration. In reference to Figure3.2, the vectors p f and pr represent the location of the rear
and front wheels in a stationary or inertial coordinate system with basis vectors (êx , êy , êz).

Figure 3.2: A kinematic single track model[21]

p f and pr are the contact points of the rear wheel an front wheel on the ground. θ is the angle
which describes the direction that the vehicle is facing, also called vehicle heading. This is
defined as the angle between êx and p f -pr . Blue arrows represent the time derivatives of p f and
pr , are also the direction of nonholonomic constraint.

Defferential constraints will be derived for the coordinate systems from the angle θ , together
with the motion of one of the points p f as in [16] or pr as in [34].

To satisfy the no-slip assumption, the motion of the points p f and pr must be colinear with the
vehicle orientation. Expressed as an equation, this constraint on the rear wheel is

(ṗr · êy) cos(θ )− (ṗr · êx) sin(θ ) = 0, (3.1)

and for the front wheel:

(ṗ f · êy) cos(θ +δ)− (ṗ f · êx) sin(θ +δ) = 0. (3.2)

The constraint between front wheel and rear wheel can be expressed in

x f = xr + l cos(θ ),

y f = yr + l sin(θ ).
(3.3)

The equation 3.2 can be rewritten as

0=
d(yr + l sin(θ ))

d t
cos(θ +δ)−

d(xr + l cos(θ ))
d t

sin(θ +δ)

= ( ẏr + lθ̇ cos(θ )) cos(θ +δ)− ( ẋr − lθ̇ sin(θ )) sin(θ +δ)

= ẏr cos(θ +δ) + lθ̇ cos(δ)− ẋr sin(θ +δ)

(3.4)

This expression can also be rewritten in terms of the componentwise motion of each point along
the basic vectors. The motion of the rear wheel along the êx -direction is xr := pr · êx . Similarly,
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for êy -direction, yr := pr · êy . The forward speed is vr := ṗr · (p f − pr)/||(p f − pr)||, which is the
magnitude of ṗr with the correct sign to indicate forward or reverse driving[21]. In terms of the
scalar quantities xr , yr and θ , the differential constraint is

ẋr = vr cos(θ ),

ẏr = vr sin(θ ),
(3.5)

after that, the equation 3.4 can be rewritten as

θ̇ =
ẋr sin(θ +δ)− ẏr cos(θ +δ)

l cosδ

=
v cos(θ ) sin(θ +δ)− v sin(θ ) cos(θ +δ)

l cos(δ)

=
v cos(θ )(sin(θ ) cos(δ) + cos(θ ) sin(δ))

l cos(δ)

−
v sin(θ )(cos(θ ) cos(δ)− sin(θ ) sin(δ))

l cos(δ)

=
v sin(δ)
l cos(δ)

=
v tan(δ)

l
.

(3.6)

Therefore, the kinematic single-track model can be expressed as











ẋr = vr cos(θ )

ẏr = vr sin(θ )

θ̇ = vr
l tan(δ)

(3.7)

Alternatively, the difficult constraint can be written in terms of the motion of p f ,











ẋ f = v f cos(θ +δ),

ẏ f = v f sin(θ +δ),

θ̇ =
v f

l sin(δ),

(3.8)

where the front wheel forward speed v f is used. The front wheel speed v f is related to the rear
wheel speed by

vr

v f
= cos(δ). (3.9)

The planning and control problems for this model involve selecting the steering angle δ with in
the mechanical limits of the vehicle δ ∈ [δmin,δmax], and forward speed vr within an acceptable
range, vr ∈ [vmin, vmax].

A simplification that is sometimes utilized, is to select the heading rate ω instead of steering
angle δ. These quantities are related by

δ = arctan(
lω
vr
), (3.10)
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simplifying the heading dynamics to

θ̇ =ω, ω ∈ [
vr

l
tan(δmin),

vr

l
tan(δmax)]. (3.11)

In this situation, the model is sometimes referred to as the unicycle model since it can be derived
by considering the motion of a single wheel.

The kinematic models are suitable for planning paths at low speeds (like the application scenario
in this work) where inertial effects are small in comparison to the limitations on mobility imposed
by the no-slip assumption. A major drawback of this model is that it permits instantaneous
steering angle changes which can be problematic if the motion planning module generates
solutions with such instantaneous changes[21].

In addition to the limit on the steering angle, the steering rate can therefore be limited: vδ ∈
[δ̇min, δ̇max]. The same problem can arise with the car’s speed vr and can be resolved in the
same way. The drawback to this technique is the increased dimension of the model which can
complicate motion planning and control problems.

The choice of coordinate system is not limited to using one of the wheel locations as a position
coordinate. For models derived using principles from classical mechanics it can be convenient
to use the center of mass as the position coordinate as in [35], [36], or the center of oscillation
as in [37], [38].
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3.1.2 Dynamic Single-Track Model

When the acceleration of the vehicle is sufficiently large, the no-slip assumption between tire
and ground is invalid. For this reason, the kinematic single-track model is no more suitable and
the dynamic single-track model is developed, which considers the inertial effects. As it shows in
figure 3.3, ω f and ωr are relative angular velocities of the wheels with respect to the vehicle.

Figure 3.3: A dynamic single-track model[21]

In the dynamic single-track model, the acceleration is proportional to the force generated by the
ground on the tires. Taking pc to be the vehicles center of mass, the motion of the vehicle is
governed by

mp̈c = F f + Fr , (3.12)

and

Izzθ̈ = (pc − p f )× F f + (pc − pr)× Fr , (3.13)

where Fr and F f are the forces applied to the vehicle by the ground through the ground-tire
interaction, m is the total mass of the vehicle and Izz is the polar moment of inertia in the êz

direction about the center of mass.

The models discussed in this section are suitable for the motion planning and control tasks in
following text. What differs dynamic single-track model from kinematic single-track model is that
the no-slip assumption is no more valid, which occurs in steering with high speed. In this work,
the vehicles moves with a very low velocity, the inertial effect can therefore be neglected. That
means, only the kinematic single-track model will be applied in this work.
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3.1.3 Kinematic Model Linearization

The kinematic vehicle system is a nonlinear control system. The differential equation of rear
wheel from 3.7 can be linearized as

ż = f (z, u) = A∗z + B∗u (3.14)

with the state vector and input vector

z =









x
y
v
θ









and u=

�

a
δ

�

, (3.15)

where the inputs are the longitudinal acceleration and the steering angle, outputs are the vehicle
position, the vehicle velocity and the yaw angle. The matrix A∗ can be expressed as

A∗ =











∂
∂ x v cos(θ ) ∂

∂ y v cos(θ ) ∂
∂ v v cos(θ ) ∂

∂ θ v cos(θ )
∂
∂ x v sin(θ ) ∂

∂ y v sin(θ ) ∂
∂ v v sin(θ ) ∂

∂ θ v sin(θ )
∂
∂ x a ∂

∂ y a ∂
∂ v a ∂

∂ θ a
∂
∂ x

v tan(δ)
l

∂
∂ y

v tan(δ)
l

∂
∂ v

v tan(δ)
l

∂
∂ θ

v tan(δ)
l











=









0 0 cos(θ̄ ) −v sin(θ̄ )
0 0 sin(θ̄ ) v cos(θ̄ )
0 0 0 0

0 0 tan(δ̄)
l 0









(3.16)

and B∗ can be expressed as

B∗ =









∂
∂ a v cos(θ ) ∂

∂ δ v cos(θ )
∂
∂ a v sin(θ ) ∂

∂ a v sin(θ )
∂
∂ a a ∂

∂ a a
∂
∂ a

v tan(δ)
l

∂
∂ a

v tan(δ)
l









=









0 0
0 0
1 0
0 v̄

l cos2(δ̄)









.

(3.17)

Because the computer can only process the discrete signals, after the Forward Euler discretiza-
tion with sampling time dt the discrete-time model is

zk+1 = zk + f (zk, uk)dt. (3.18)

Using first degree Taylor expansion around z̄ and ū, then the model is

zk+1 = zk + ( f (z̄, ū) + A∗zk + B∗uk − A∗z̄ − B∗ū)dt

zk+1 = (I + d tA∗)zk + (d tB∗)uk + ( f (z̄, ū)− A∗z̄ − B∗ū)dt.
(3.19)

The discretized linearized model can be rewritten in normal form as

zk+1 = Azk + Buk + C , (3.20)
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where

A= (I + dtA∗)

=









1 0 cos(θ̄ )dt −v̄ sin(θ̄ )dt
0 1 sin(θ̄ )dt v̄ cos(θ̄ )dt
0 0 1 0

0 0 tan(δ̄))
l dt 1









,
(3.21)

B = dtB∗

=









0 0
0 0
dt 0
0 v̄

l cos2(δ) dt









,
(3.22)

C = ( f (z̄, ū)− A∗z̄ − B∗ū)dt

= d t(









v̄ cos(θ̄ )
v̄ sin(θ̄ )

ā
v̄ tan(δ̄)

l









−









v̄ cos(θ̄ )− v̄ sin(θ̄ )θ̄
v̄ sin(θ̄ ) + v̄ cos(θ̄ )θ̄

0
v̄ tan(δ̄)

l









−











0
0
ā
v̄δ̄

l cos2(δ̄)











)

=











v̄ sin(θ̄ )θ̄ dt
−v̄ cos(θ̄ )θ̄ dt

0

− v̄δ̄
l cos2(δ̄) dt











.

(3.23)

Now the vehicle can be represented as a linearized state-space model with matrices A, B and C.
Because it is discrete, it can now also be processed in computer.
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3.2 Tools

An objective of this section was to introduce the software and method, which are used in this
work. The Controller receives data from the camera, after which it can calculate a steering angle
and send it to the vehicle. The mechanism of how the units transfer the data is based on a Robot
Operating System (ROS). The software in the loop ran in SILAB.

3.2.1 ROS

ROS is an Operating System (OS) in concept because it provides all the services such as
hardware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management.

ROS is designed to be a loosely coupled system where a process is called a node and every
node should be responsible for one task. Nodes communicate with each other using messages
that pass via logical channels called topics. Each node can send or get data from the other node
using the publish/subscribe model.

As shown in the figure 3.4, the wheel odometer measures odom and sends it to the path planner.
The path planner receives odom and then computes an appropriate velocity. After that, the path
planner sends the velocity to the motor controller. The wheel odometer, path planner and motor
controller are nodes.

Figure 3.4: Nodes and topics in ROS[39]

Figure 3.5: Master and nodes in ROS[40]
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In order to manage this loosely-coupled environment, there is a Master in ROS which is
responsible for name registration and lookup for the rest of the system. Without the Master,
nodes would not be able to find each other or exchange messages. The relationships between
master, nodes, and messages are described in figure 3.5.

Messages are structures of data filled with pieces of information by nodes. Nodes exchange
them using called topics. Then nodes either publish topics or subscribe to them. As the example
in the figure 3.9 shows, the camera node state will publish a topic called /image_data. Both of
the other nodes register that they are subscribed to the topic /image_data.

However, there is a disadvantage of the publish / subscribe model. While it is a very flexible
communication paradigm, its many-to-many one-way transport is not appropriate for request /
reply interactions, which are often required in a distributed system. Request / reply is done via
a service, which is defined by a pair of messages: one for the request and one for the reply.
A providing ROS node offers a service under a string name, and a client calls the service by
sending the request message and awaiting the reply.

The example is in the figure 3.8. With the implementation of service, the image processing node
first requests the topic /image_data, the camera node gathers data from the camera, and then
sends the reply. It realizes that the nodes can gather data from other nodes at specific time,
namely only when the data is requested.

3.2.2 SILAB

The simulation software SILAB introduced by the Würzburg Institut for Traffic Sciences GmbH
(WIVW) is used for the driving simulation study. SILAB offers a reproducible vehicle and traffic
environment with the possibility exporting vehicle states and data for further research. The figure
3.6 shows a simulated urban scenario in SILAB.

Figure 3.6: A simulation scenario of in SILAB Figure 3.7: camera positioning in SILAB

The communication between SILAB and the Interface is achieved by a Digital Processing
Unit (DPU), called DPUTOFInterface. The DPU transmits control commands and vehicle data
between SILAB and the Interface.

The camera positioning plays a significant role in this work because it greatly affects the lane
detection. In SILAB, it is possible to simulate every camera position and heading by modifying
the 6 parameters in the file DPUSGE_TOF.inc. The meaning of these parameters are described
in the figure 3.7.
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Figure 3.8: Services in ROS[40]

Figure 3.9: Publishing and subscribing in ROS[40]
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This chapter contains the building of simulation environments and the design of controllers. In the
first section, the simulation environment is introduced. The control algorithm is implemented in
the simulation environment and the controller gains are tuned based on the control performance.
Next, some modern methods for combined controller are introduced.

4.1 Environment

This section mainly includes how to build a simulation environment for an autonomous robot.
The path and the trajectory of robots are visualized at the end of this section. An important
property of autonomous robots, the coordinate transformation is also introduced in this section.
A simulation of latency is presented in the last subsection.

4.1.1 Path

The simulation environment is implemented in Python. The path is expressed as discrete points.
In the visualization, the points are connected by lines. Therefore, the path is shown in figure
4.3 as a continuous curve. In the following example, there are 201 points in total over 50m to
express the sinusoidal path.

1 ax = np.linspace(0, 50, 201)

2 ay = [10 * math.sin(ix / 10) for ix in ax]

4.1.2 Vehicle

The function update updates the vehicle state every dt. The vehicle heading angle θ affects
along with the vehicle velocity the horizontal and vertical position. The steering angle affects the
vehicle heading angle, the mathematical formula of which is given in the section 3.1.1.

It is worth mentioning that the input of the function state and delta, are respectively the vehicle
state before the execution of this function and the steering angle, which is computed by the
control algorithm. The output is the vehicle state after the execution of the function.

1 def update(state , delta):

2
3 state.x = state.x + state.v * math.cos(state.psi) * dt

4 state.y = state.y + state.v * math.sin(state.psi) * dt

5 state.theta = state.theta + state.v/L * math.tan(delta) * dt

6 state.v = state.v

7
8 return state
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4.1.3 Coordinate Transformation

Autonomous robots make sensor observations usually in their ego-centric frame. Figure 4.1
shows the detected lanes in vehicle ego-centric frame. In this project, there is no high definition
map or GPS available to localize the vehicle in the world coordinates. Therefore, the lateral
control also has to be computed in the ego-centric system.

Figure 4.1: Detected lanes in the ego-centric frame

For this reason, the coordinate transformation is necessary for the development of a controller.
At first, the index of the nearest path point is determined. This process is implemented in a
function named calc_nearest_index:

1 def calc_nearest_index(state , path points):

2
3 dx = [state.x - icx for icx in cx]

4 dy = [state.y - icy for icy in cy]

5
6 d = [idx ** 2 + idy ** 2 for (idx , idy) in zip(dx, dy)]

7
8 # get the index of minimal distance in all of distance

9 i = d.index(min(d))

10
11 return i

This function calculates the distances between every path point and the vehicle position and
returns the index of minimal distance. The more compact the path points are, the more accurate
the nearest path point relative to the vehicle position is.

Figure 4.2 shows the principle of the 2 dimensional coordinate transformation in a cartesian
coordinate system. The black coordinate x , y is the higher-order object coordinate system,
frequently called the world coordinate system. For a rotation by an angle θ counterclockwise
around the origin, the function form is x ′ = x cos(θ ) + y sin(θ ) and y ′ = −x sin(θ ) + y cos(θ ). It is
simple to rewrite it in a rotation matrix:

�

x ′

y ′

�

=

�

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

��

x
y

�

. (4.1)
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Figure 4.2: A cartesian coordinate transformation in 2 dimension

For transforming the coordinate system, it is necessary to gather n points after the nearest path
points. The vehicle camera range decides the n. For example, the distance between 2 discrete
path points is 0.1m. If the required preview length in the simulation is 4m, then n should be 40 to
gather all of the path points 4m in front of the vehicle.

Figure 4.3 shows the total path for the vehicle in the world coordinate system. As shown in
figure 4.4 and 4.5, the vehicle has 4m preview length. As explained before, [x , y] in figure 4.4
is path point position in world coordinates and [x ′, y ′] in figure 4.5 is the path point position in
the vehicle ego-centric frame. It is worth mentioning that the positive x-direction is the vehicle
heading and the origin refers to the middle point of the vehicle rear wheels. It is obvious that the
vehicle should be steered right in this example.

Figure 4.3: The global path in the world coordinate system

The path points, which were in the world coordinate system on [x , y], are now in the vehicle
ego-centric frame on [x ′, y ′]. The function poly_fit is implemented to transform the coordinate
system to ego-centric frame and computes the path to a 3 degree polynomial.

1 def poly_fit(i, cx , cy):

2
3 # use 40 Point(about 4m) to polyfit a curve

4 x = [cx[ia] - state.x for ia in range(i,i+n)]

5 y = [cy[ia] - state.y for ia in range(i,i+n)]

6
7 x_dot = [(ix * cos(state.theta)) + (iy * sin(state.theta))

for (ix, iy) in zip(x, y)]

8 y_dot = [(-ix * sin(state.theta)) + (iy * np.cos(state.theta)

) for (ix, iy) in zip(x, y)]

9
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10 polynom = np.polyfit(fx, fy , 3)

11
12 return polynom

Figure 4.4: The local path in the world coordinate system Figure 4.5: The local path in the ego-centric frame

Using the functions in this subsection, it is possible to simulate any path and transform it into
ego-centric frame, which is very helpful to develop a lateral controller.
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4.1.4 Minimal Distance

For a discrete system, the minimal distance which is computed via d =
Æ

(x − xp)2 + (y − yp)2 is
not accurate. (x , y) is the vehicle position and (xp, yp) is the nearest path point in this discrete
system. It is necessary to define a separate function to compute the minimal distance.

Figure 4.6: Vehicle position between [i-1] and [i] Figure 4.7: Vehicle position between [i] and [i+1]

Figure 4.6 and 4.7 shows the principle of this algorithm. First of all, is is determined whether the
vehicle is in front or behind the nearest discrete path point. It is not complicated to compute the
3 side lengths of the triangle in figures if all the point positions are already known. By use of
Heron’s formula, the area of the triangle can be calculated:

A=
Æ

s(s− a)(s− b)(s− c), (4.2)

where a, b, c are the side lengths of this triangle, s is the semi-perimeter of the angle and can be
calculated by:

s =
a+ b+ c

2
. (4.3)

Once the area of the triangle is known, the improved minimal distance, namely the height of this
triangle (green lines in the figure 4.6 and 4.7) is easy to calculate by:

h=
2A
c

. (4.4)

The implementation in Python is:

1 if bx[i]>0:

2 a = math.sqrt(bx[i]**2 + by[i]**2)

3 b = math.sqrt(bx[i -1]**2 + by[i -1]**2)

4 c = math.sqrt((bx[i]-bx[i-1]) **2 + (by[i]-by[i-1]) **2)

5 s = (a+b+c) / 2.0

6 area = math.sqrt(s * (s-a) * (s-b) * (s-c))

7 error = 2 * area /c

8
9 elif bx[i]<0:

10 a = math.sqrt(bx[i]**2 + by[i]**2)

11 b = math.sqrt(bx[i+1]**2 + by[i+1]**2)

12 c = math.sqrt((bx[i+1]-bx[i])**2 + (by[i+1]-by[i])**2)

13 s = (a+b+c) / 2.0

14 area = math.sqrt(s * (s-a) * (s-b) * (s-c))

15 error = 2 * area /c
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4.1.5 Latency

Latency is a time delay between phenomena and observation of some physical change in the
system. Latency is physically a consequence of the limited velocity with which any physical
interaction can propagate. The magnitude of this velocity is always less than or equal to the
speed of light. Therefore, every physical system with any physical separation (distance) between
cause and effect will experience some sort of latency, regardless of the nature of stimulation.

Clearly, there is a latency between the lane detection module and the steering module. It is
useful to simulate the latency in the simulation environment for controller development. If the
lateral controller performs well in the simulation with latency, it is rational to assume that the
controller also performs well in the real world, where latency is nonnegligible.

Figure 4.8: First in-first out in the queueing theory

The simulation of latency is based on the queueing theory. First of all, a queue with a size of n is
initialized to store the potential steering angles. n is determined by latency divided by the time
step. The simulation of latency follows the first in-first out (FIFO) principle, which is shown in
figure 4.8. Each time a steering angle is calculated and is added to the queue. Values are only
popped from the queue when it is full. Therefore, the vehicle steering unit only uses the steering
angle calculated n · dt seconds prior. This introduces latency between lane detection module
and vehicle steering unit.

1 import queue

2 from collections import deque

3 #define the size of queue

4 domains = [0] * int(queue_size)

5 lenkradwinkel_queue = deque(domains)

6
7 def latency(state , path points):

8
9 lenkradwinkel_future = path_tracking_controller(state , path

points)

10 lenkradwinkel_use = lenkradwinkel_queue.pop()

11 lenkradwinkel_queue.appendleft(lenkradwinkel_future)

12
13 return lenkradwinkel_use

The function latency is the implementation of system latency. The steering angle which is
computes based on the actual vehicle state is appended on the left site of the queue. At the
same time, the steering angle on the right side of the queue is dequeued and applied to the
vehicle. The results shown in section 5 demonstrates that the simulation method can simulate
latency correctly.
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4.2 Implementation of Controllers

This section mainly includes the implementation of 3 lateral control methods. The 3 control
methods are PID, Stanley and Pure Pursuit. The principle and the state-of-the-art of these
path-tracking control methods were introduced in section 2.3. The simulation and visualization
are based on the environment described in the section 4.1.

4.2.1 Incremental PID Controller

The principle and the base form of a PID controller was introduced in section 2.3.1. However, a
computer can only compute a discrete signal. Therefore, the PID algorithm must be discretized
to be implemented.

The resulting digital signal y(tk) is use in the control function to calculate the value of the
control signal u(tk). Figure 4.9 shows how a control loop be implemented. As shown in the
figure, the control signal is scaled and sent to the Digital-Analog (DA) Converter, where it is
held constant during the present time step, followed by the control action of the plant. The
computer registers the process measurement signal via an Analog-Digital (AD) converter. The
AD converter produces a numerical value which represents the measurement.

Figure 4.9: Control loop implemented with a computer[41]

There are two prevailing PID forms:

• Position PID algorithm: the output of the controller is the absolute value of the
control signal.
The component form of a discrete Position PID is

u(k) = Kpe(k) + Ki

∑

e(k) + Kd[e(k)− e(k− 1)], (4.5)

which needs to store all previous errors e1, e2, ..., ek−1.

• Incremental PID algorithm: the output of the controller represents the increments
of the control signal. It defines the incremental control value

∆uk = uk − uk−1. (4.6)
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The form of discrete incremental PID is

∆uk = Kp[e(k)− e(k− 1)] + Kie(k) + Kd[e(k)− 2e(k− 1) + e(k− 2)]. (4.7)

This algorithm does not need to store all previous errors but only the 3 most recent
errors ek−2, ek−1, ek.

Error ek describes the distance between the actual vehicle state and the nearest path point. It is
computed with the function closest_error which is presented in subsection 4.1.4. To develop
a position PID controller, the ek is applied in equation 4.5. Alternatively, the ek is applied in
equation 4.7 to develop an incremental PID controller.

1 def pid_controller(state , path points , error_array , delta_array):

2
3 error = closest_error(state ,path points)

4
5 k_e = len(error_array)

6 j_e = len(delta_array)

7
8 e_ke = error

9 e_k1e = error_array[k_e -2]

10 e_k2e = error_array[k_e -3]

11
12 delta_k1_e = delta_array[j_e -1]

13
14 delta_delta_e = kp * (e_ke - e_k1e) + ki * e_ke + kd * (e_ke

- 2.0* e_k1e + e_k2e)

15 delta_e = delta_k1_e + delta_delta_e

16
17 if delta_e >math.pi/4.0:

18 delta = math.pi/4.0

19 elif delta_e <-math.pi/4.0:

20 delta = -math.pi/4.0

21 else:

22 delta = delta_e

23
24 return delta

Function pid_controller is the implementation of an incremental PID controller. error_array is
a list where all previous errors are stored. The incremental PID control algorithm computes
a change of steering angle. It is necessary to store the last steering angle to calculate the
actual steering angle. For this reason, a list called delta_array is implemented. Clearly, there
is a maximal and minimal steering angle and δe is checked whether is beyond the limitation of
vehicle constraint. It implemented at the end of the function.

Now, a incremental PID controller is fully implemented. The results and the discussion are in
section 5.
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4.2.2 Stanley Controller

The Stanley control method helped Stanford University to win the DARPA challenge in 2007. The
principle of Stanley control is introduced in section 2.3.1. The base formula of Stanley control is

δ(t) = θe(t) + tan−1(
ke(t)
vx(t)

), (4.8)

where θe(t) is the angle difference between the vehicle heading and the heading of the nearest
path point, e(t) is the lateral error and vx(t) is the longitudinal velocity. The calculation of e(t) is
introduced in former sections and the longitudinal velocity is predefined by users.

To compute θe(t), it is necessary to import a derivative function to calculate the tangent of the
path on the nearest point. The function poly_fit, first introduced in the section 4.1.3, aims to
fit the discrete points curve to compute the polynomial parameters. Next, a continuous curve
is reconstructed with these polynomial parameters and the heading of the path on the nearest
point can be computed. Because it is already in the vehicle ego-centric frame, the tangent of the
path is already the heading error. This algorithm is implemented in the function calc_theta_e.

1 from scipy.misch import derivative

2
3 def calc_theta_e(state , path points):

4
5 polynom parameter = poly_fit(state , path points)

6
7 def f(x):

8 return p3 * (x ** 3) + p2 * (x ** 2) + p1 * x + p0

9
10 d1y_dx1 = derivative(f, nearest path point x value , dx=1e-6)

11
12 theta_e = math.atan2(d1y_dx1 , 1.0)

13
14 return theta_e

However, the directions of θe(t) and e(t) are confusing factors. They have to be clearly predefined.
As shown in figure 4.10, the magnitude of the scalar value e is illustrated in red. As illustrated
e(t)> 0, and for the case where the car is to the left of the path, e(t)< 0. Besides, as illustrated
θe(t)< 0, and for the case where the car heading is to the left of the path, θe(t)> 0.

Figure 4.10: θe(t) and e(t) in Stanley control[21]
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After the calculation of θe(t) and e(t), it is not complicated to implement equation 4.8 as function
stanley_control.

1 def stanley_control(state , path points):

2
3 th_e = calc_theta_e(state , path points)

4
5 #longitudinal velocity predefined

6 v = state.v

7
8 delta = th_e + math.atan2(k*-e/v, 1.0)

9
10 return delta

Now, a Stanley controller is implemented. The results and discussion are a part of section 5.
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4.2.3 Pure Pursuit Controller

The principle of the Pure Pursuit control method is already introduced in section 2.3.3. The
feedback controllers, which compute the steering angle via lateral and heading errors, compute
the steering angle in the world coordinate and the vehicle ego-centric system in the same way.
However, unlike the feedback controllers like the PID and the Stanley controller, the Pure Pursuit
controller has a totally different implementation in the vehicle ego-centric frame.

The key issue of the Pure Pursuit algorithm is angle α. The steering angle is given as

δ(t) = tan−1(
2L sin(α(t)

Ld
), (4.9)

where an angle α is required. The angle α in the world coordinate system is given by

α= arctan(
g y − yr

gx − xr
)− θ , (4.10)

where the (gx , g y) is the goal point on the path in the world coordinate system and the (xr , yr) and
θ are the vehicle rear position and heading angle in world coordinates, respectively. However,
there is no position or angle in the vehicle ego-centric frame. Therefore, there is a another
method to calculate the angle α. This method is introduced in the following text.

Figure 4.11: A Pure Pursuit geometry in the vehicle ego-centric frame

Figure 4.11 shows a Pure Pursuit geometry in the vehicle ego-centric frame. The detected lane
in this figure is illustrated in red. A Pure Pursuit controller in the vehicle ego-centric frame uses
the polynomial parameters as the inputs.

A simplified geometry of the path is shown in the figure 4.12. The coordinate system is rotated
90 degrees clockwise to keep close to the common practice, which is helpful for understanding.
As shown in this figure, the length of the side in orange is Ld sin(α) and the length of the side in
yellow is Ld cos(α).
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Figure 4.12: A simplified path geometry after rotation

It is not difficult to define the angle α in such a coordinate system. To calculate the angle α, it is
helpful to implement

x = Ld cos(α) (4.11)

into function

p3 x3 + p2 x2 + p1 x + p0 = Ldsin(α), (4.12)

where p3, p2, p1, p0 are the polynomial parameters of the illustrated curve in figure 4.12. Therefore,
only x is unknown in this equation. By use of the fsolve function from scipy.optimize, it is not
complicated to solve for α.

The implementation of the Pure Pursuit algorithm is

1 from scipy.optimize import fsolve

2
3 def pure_pursuit_controller(state , path points):

4
5 polynom = poly_Abschnitt(state , path points)

6
7 def f(x):

8 return ((ld*math.cos(x))**3)*p_3 +((ld*math.cos(x))**2)*

p_2+(ld*math.cos(x))*p_1+p_0 -ld*math.sin(x)

9
10 alpha = fsolve(f, 0)

11
12 delta = math.atan2 (2.0 * long * math.sin(alpha) / ld, 1.0)

13
14 return delta

The results and evaluation of Pure Pursuit are presented in section 5.
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4.3 Combination of Controllers

The Pure Pursuit controller is widely used to solve the path-tracking problem for the autonomous
vehicle. However, its performance depends highly on the look-ahead distance. Besides, the
geometric relationship does not take the impacts of the tracking error into consideration. This
section introduces a method of combined controllers. The geometric controller Pure Pursuit is
used as the basic controller and a position Proportional Integral (PI) controller is used to improve
the lateral control performance. Figure 4.13 shows the structure of a combined Pure Pursuit - PI
controller. At the end of the combining process, a low-pass filter is added to smooth the control
performance.

Figure 4.13: The Structure of a combined Pure Pursuit - PI controller[19]

The role of the P-controller is to add a feedback mechanism to the steering angle prediction of
Pure Pursuit to reflect the tracking error. The control law of the P controller is

δp = Kpela, (4.13)

where the look-ahead error ela is a combination of both lateral error e and heading error θe. The
look-ahead error, namely the minimal distance, is illustrated in green in figure 4.14.

Figure 4.14: A geometry relationship of look-ahead error ela
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The role of the I-controller is to reduce the steady-state error. In this method, a position I-
controller is used to integrate the derivations from the tracked path over a period time. It is given
as

δi = Ki

∑

e. (4.14)

A Low-pass filter (LPF) can reduce the amplitude of a sudden change in a certain period of time.
Actually, the sudden change of the autonomous vehicle may happen under many situations, like
an error in perception, the location and so on. The filter is presented as

δ =
l−2
∑

0

δpreviousωprevious +δcur rentωcur rent , (4.15)

where ωprevious is the weight of the previous steering angle, ωcur rent is the current steering
angle’s weight and l is the length of the filter window, which is given as

ωprevious =
1−ωcur rent

l − 1
. (4.16)

δcur rent is the current computed output of the steering angle. The LPF can synthesize the
previous steering angle output, smooth the final steering angle and calculate δ.The final steering
angle output can be given as

δ(t) = LPF(Kppδpp +δp +δi), (4.17)

where Kpp is the control parameter of the Pure Pursuit controller that needs to be adjusted
according to the actual situation. δp and δi are determined via equation 4.13 and 4.14. The sum
of Kpp, Kp and Ki is equal to one because these three controllers are mutually restricted.

The results and comparison of separate controllers and combined controller are presented in
section 5.
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4.4 Experiments in SILAB

Two computers work together to run path detection and tracking experiments in SILAB. PC_1
runs a Windows OS because SILAB only works on computers running Windows OS. PC_2
runs Ubuntu OS and ROS is integrated into Ubuntu OS. A program in PC_1 named Screen-
Streamer144 is executed to send the SILAB window from PC_1 to PC_2. A launch file called
storm.launch runs in ROS to receive the SILAB window from PC_1.

Figure 4.15 shows a ROS graph including all involving nodes and topics. As shown in the figure,
the received video from the window compute is divided in images with a fixed frequency. A lane
detection node in ROS uses the images as input and computes the polynomial of curve of the
latest lane and publishes it as a message. Thanks to ROS, a lateral controller node subscribes
the message and uses it to calculate the steering angle. Finally, the computed steering angle is
sent to SILAB. Here, the system is a closed loop.

Figure 4.15: A graph including nodes and topics in ROS

Figure 4.16 shows a visualization of the lane detection process. The lane detection algorithm was
implemented by Bomelburg-Zacharias[2], who works for project SToRM. The original picture in
SILAB is on the upper left corner of the figure. After 6-step lane detection process, a polynomial
in the current vehicle ego-centric frame is determined and visualized as a curve on the lower
right corner of the figure.

Figure 4.16: Process of lane marking detection
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ROS provides many tool packages, which are very helpful in observing and checking the system.
For example, figure 4.15 is a ROS graph created by the rqt package. rqt is a Qt-based framework
Graphical User Interface (GUI) development for ROS. There is a another important function of
the rqt package: rqt_topic. rqt_topic provides a GUI plugin for displaying debug information
about ROS topics including publishers, subscribers, publishing rate and ROS messages.

Figure 4.17: A rqt_topic window in the experiment in SILAB

Figure 4.17 shows the rqt_topic window in this experiment. The often used topics can be found
here. For example, the polynomial of curve is stored in data in branch /image_decoded. The
value and the frequency is also given in this window. Additionally, the lenkradwinkel (steering
angle) plays also a significant role in experiments.
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This chapter mainly includes the results and discussions of the implemented controllers. Section
5.1 shows the lateral control performance of PID, Stanley and Pure Pursuit. An adaptive Pure
Pursuit is introduced in section 5.1.4. It has an adaptive look-ahead distance, which is computed
a priori via the path curvature. A comparison of modern lateral controllers is located in the last
section.

5.1 Lateral Control Performance

In this section, the lateral control performance of all 3 controllers implemented in chapter 4 is
discussed. The results are computed based on the simulation environment introduced in section
4.1. All used vehicle parameters are given in table 5.1.

Table 5.1: Used vehicle parameters in experiments

Vehicle Parameters

Reference path Wheelbase Velocity Steering limit Initial configuration
(xs(s), ys(s)) = (s, 10 · sin(s/10))

2.82m 2 m
s |δ| ≤ π

4 (x r(s), yr(s)) = (0,0)
(xs(s), ys(s)) = (s, 2 · arctan(s) + 3.1)
(xs(s), ys(s)) = (s,−(κ2

r − s2)1/2) +κr

Real route in Garching near Munich

The first 2 paths in table 5.1 are illustrated in figure 5.1 and 5.2, the red rectangle represents
vehicle. As shown in the 2 figures, path 1 is a long route with enormous curvature change, path
2 is a route but with a lane changing. Reference path 3 is first introduced in subsection 5.1.4

Figure 5.1: Reference path 1 Figure 5.2: Reference path 2

In following subsections, the lateral control performance of controllers in Path 1 is shown. The
results of the performance of other controllers in path 2 are given in the appendix.
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5.1.1 Stanley Controller

This section shows the lateral control performance of the Stanley controller with different gains k.
The principle of the Stanley controller was introduced in 4.2.2. The base formula is given as

δ(t) = θe(t) + tan−1
�ke(t)

vx(t)

�

, (5.1)

where k is the only modifiable parameter. Figure 5.3 shows the relatioship between the vehicle
steering angle and the path curvature. Figure 5.4 shows the lateral error and the heading error
of the vehicle with a Stanley controller having k = 0.8 in reference path 1. The figures show
clearly that the path curvature affects the lateral control performance greatly.
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Figure 5.3: Stanley with k = 0.8, steering angle and curvature of the path
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Figure 5.4: Stanley with k = 0.8, lateral error and heading error
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Next, the lateral control performance of the Stanley controllers with different gains is compared.
The objective of the comparison is to determine the affection of gain k on a Stanley Controller.

Figure 5.5, 5.6, 5.7 and 5.8 show the average lateral error and the maximal lateral error of the
vehicle using the Stanley controller. The figures lead us to the conclusion that the gain k of a
lateral controller affects the lateral control performance greatly.
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Figure 5.5: k = 0.8, average lateral error 0.32m
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Figure 5.6: k = 0.5, average lateral error 0.38m

Comparing figure 5.5 with figure 5.6, the average lateral error increases by 14% when the gain
k drops from 0.8 to 0.5. The same relationship is reflected in the maximal lateral error, which
increases by 5%. More average lateral errors by different gains are given in table 5.2.

Figure 5.7: k = 0.8, maximal lateral error 0.71m Figure 5.8: k = 0.5, average lateral error 0.74m

Figures 5.7 and 5.8 show that a greater gain leads to a quicker reaction of the lateral error. Both
of the figures show the detailed information of Figures 5.5 and 5.6. It is clear that the Stanley
controller with k = 0.8 reacts more quickly than the controller with k = 0.5. It can be explained
with the basic form of the Stanley controller in equation 5.1: gain k only affects the lateral error
term. That means a greater gain leads to a greater error term. Therefore, the calculated steering
angle is greater and the vehicle reacts more quickly to the lateral error.

To prove the hypothesis, it is necessary to design a Stanley controller with k = 0. This Stanley
controller has only heading-errors feedback, which means it cannot react on any lateral errors.
The result is shown in figure 5.9. Clearly, the vehicle moves along the form of the path, but
always with a parallel offset. The cause of this phenomena is that the Stanley controller has no
lateral error feedback and cannot react to the lateral error. Therefore, the hypothesis is proved:
the greater the gain k, the better the control performance.
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Figure 5.9: k = 0,only heading error feedback, without lateral error feedback

Table 5.2 shows the average and maximal lateral errors of Stanley controllers with potential gains
in reference path 1. The relationship of lateral control performance and gains is not difficult to
find: the greater the gain, the better the controller performs. Figure 5.10 shows the relationship
more intuitively. Additionally, the system applying Stanley controller with k ≥ 0.9 is not stable,
the vehicle cannot follow the path with controllers with these gains.

Table 5.2: Comparison of Stanley controllers with different gains

Gain k Average lateral error Maximal lateral error Variance
0.0 1.98m 2.71m 0.190m2

0.1 0.60m 1.64m 0.269m2

0.2 0.49m 1.25m 0.138m2

0.3 0.44m 1.04m 0.090m2

0.4 0.40m 0.88m 0.068m2

0.5 0.38m 0.74m 0.056m2

0.6 0.36m 0.71m 0.050m2

0.7 0.35m 0.71m 0.048m2

0.8 0.32m 0.70m 0.054m2

0.9 47.09m 96.914m 821.977m2
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Figure 5.10: The relationship between gains and lateral errors of Stanley controllers
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5.1.2 PID Controller

This section includes the performance and discussion of the PID controller with different inputs
and gains. The principle and implementation was introduced in section 4.2.1. The basic formula
of an incremental PID controller is given as

∆δ = Kp[e(k)− e(k− 1)] + Kie(k) + Kd[e(k)− 2e(k− 1) + e(k− 2)],

δk = δk−1 +∆δk,
(5.2)

where uk is the computed steering angle and e is either the lateral or heading error. There are
three gains in the PID controller. Therefore, the modification of Kp, Ki and Kd is the major task of
the controller tuning process.

Lateral error as input

The PID controller can use lateral error of vehicles as the input e. Figure 5.11 and 5.12 shows
the trajectory of vehicle using PID controller with 2 different gain-set. The gain-set 1 is Kp = 1.0,
Ki = 0.1, Kd = 1.0 and the gain-set 2 is Kp = 3.0, Ki = 0.1, Kd = 5.0.
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Figure 5.11: PID using lateral error with gain-set 1
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Figure 5.12: PID using lateral error with gain-set 2

As shown in the 2 figures, the PID controller using lateral error as input with the gain-set 2 has
already great lateral control performance. Table 5.3 expresses average and maximal lateral
error, variance as well.

Table 5.3: Comparison of PID controllers using lateral errors with different gain-sets

Gain-set Average lateral error Maximal lateral error Variance
Gain-set 1 -0.013m 0.81m 0.185m2

Gain-set 2 -0.004m 0.15m 0.005m2

Comparing figure 5.12 with 5.11, the PID controller has greater Kp and Kd . As explained in
section 2.3.1, a great Kp causes a rapid response and a great Kd reduces the effect of the error
based on the rate of error change. For this reason, the trajectory in figure 5.12 is smoother than
the trajectory in figure 5.11.

However, the controller performs not as expected. Figure 5.13 shows the lateral and heading
error of the vehicle with the PID controller using the lateral error as input with the gain-set 2.
The figure shows clearly that the lateral errors are already small values, mainly confined to
[−0.1, 0.1], but there is no indication that the lateral errors are a convergence. As shown in the
figure, the lateral errors are permanent oscillation. Therefore, the system with PID only using the
lateral error is not stable.
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Figure 5.13: PID with gain-set 2, lateral and heading error

Heading error as input

Additionally, the PID controller can also use heading error of vehicles as the input e. Figure 5.14
and 5.15 shows the trajectory of vehicle using PID controller based on heading errors with 2
different gain-set. The gain-set 3 is Kp = 2.0, Ki = 0.0, Kd = 2.0 and the gain-set 4 is Kp = 2.0,
Ki = 0.2, Kd = 2.0.
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Figure 5.14: PID using heading error with gain-set 3
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Figure 5.15: PID using heading error with gain-set 4

Figure 5.15 shows that the PID controller using the heading error as the input has a significant
control performance. Table 5.4 shows more detailed information on the control performance.

Table 5.4: Comparison of PID controllers using heading errors with different gain-sets

Gain-set Average lateral error Maximal lateral error Variance
Gain-set 3 -0.189m 1.10m 0.692m2

Gain-set 4 -0.007m 0.06m 0.001m2

Comparing figure 5.15 with 5.14, the PID controller has greater Ki. As explained before, the
I-item guaranteed the stationary accuracy of a system. For this reason, the vehicle in figure 5.15
moves more accurate along the path than the vehicle in figure 5.14.
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Figure 5.16: PID with gain-set 4, lateral and heading error

Figure 5.16 shows the lateral and heading error of the vehicle with the PID controller using
the heading error as the input with the gain-set 4. Compared to figure 5.13, the PID controller
using heading error has a better performance. However, it performs still not well facing the great
curvatures.

Lateral and Heading error as input

Figure 5.13 shows that the PID controller using lateral errors does not take the heading error
into consideration, the vehicle has always heading errors. However, as shown in figure 5.16,
the vehicle has almost no heading errors, but it has the greatest lateral error by the greatest
curvature. Therefore, it is helpful to combine the advantages of two inputs of controllers. In this
section, the PID controller using lateral and heading errors is introduced.

δ = Keδe + Kthδth, (5.3)

δe and δth are computed as

δe(k) = δ(k− 1) +∆δe(k),

δth(k) = δ(k− 1) +∆δth(k).
(5.4)

It is worth mentioning that by the computation of δe and δth, the increments are directly added to
former steering angle δ(k− 1), not to δe(k− 1) or δth(k− 1). Two gains Ke and Kth in equation
5.3 can modify the participation’s degree of δe and δth, which can be helpful in adjusting to the
multiple scenarios.
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5 Result and Discussion

Figure 5.17 shows the trajectory of the vehicle using the PID controller using lateral and heading
errors as inputs. As shown in th figure, the PID controller has good performance. Additionally,
the example gain-set is given above the figure. More performance measurements are expressed
in table 5.5.
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Figure 5.17: Trajectory of the vehicle with the PID controller using lateral and heading errors

Figure 5.18 shows the relationship between the vehicle steering angle and the path curvature.
Same as Figure 5.3, the path curvature affects the steering angle most greatly.
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Figure 5.18: PID using lateral and heading errors, steering angle and curvature of the path

Figure 5.19 shows the lateral control performance of the PID controller. As shown in the figure,
the PID controller has good performance and the system is stable and stationary accurate.
Compared to Figure 5.16, the PID controller using combined errors has clearly less maximal
lateral error and better control performance.
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Figure 5.19: PID using lateral and heading errors, lateral control performance

Table 5.5 shows the performance measurements of the PID controller with different gains. As
shown in the table, the PID controller using combined errors performs better than the PID
controller using single error and the Stanley controller.

The PID controller using combined errors has totally 8 modifiable gains. In this work, the nested
for-loops is used to find the optimal gain-set. There are other parameter tuning methods, which
is introduced in section 6.2.

Table 5.5: Comparison of PID controllers using combined errors with different gains

Ke Kth Kpe Kie Kde Kpth Kith Kdth Average lateral error Maximal lateral error Variance
0.5 0.5 2 0.2 2 2 0.2 2 -0.0006m 0.1654m 0.0084m2

0.5 0.5 2 0.2 2 2 0.2 3 2.9e−05m 0.1684m 0.0086m2

0.5 0.5 2 0.2 2 2 0.2 4 0.0006m 0.1704m 0.0087m2

0.5 0.5 2 0.2 2 2 0.3 2 -0.0015m 0.1022m 0.0033m2

0.5 0.5 2 0.2 2 2 0.3 3 -0.0015m 0.1045m 0.0035m2

0.5 0.5 2 0.2 2 2 0.3 4 -0.0012m 0.1058m 0.0036m2

0.5 0.5 2 0.2 2 2 0.4 2 -0.0002m 0.04108m 0.0004m2

0.5 0.5 2 0.2 2 2 0.4 3 -0.0003m 0.0414m 0.0004m2

...
...

...
...

...
...

...
...

...
...

...

Here, the results and discussions of PID controllers are presented. As shown in the results, the
PID controller performs a good path-tracking performance. Additionally, this performance also
measures up to the expectations of accuracy of lateral controllers.
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5 Result and Discussion

5.1.3 Pure Pursuit Controller

This section includes the results and discussions about the performance of the Pure Pursuit
controller. The basic formula of the Pure Pursuit Controller is given as

δ(t) = tan−1
�2L sin(α(t)

Ld

�

, (5.5)

where look-ahead distance Ld is the only modifiable parameter. Therefore, the Ld property is
the main tuning property for the controller. The Ld describes how far along the path the vehicle
should look from the current position to compute the angular velocity commands.

As shown in figure 5.20, the effect of changing this parameter can change how the vehicle tracks
the path. There are two major goals: regaining the path and maintaining the path. In order to
quickly regain the path between way points, a small Ld will let the vehicle move quickly towards
the path. However, as can be seen in the figure below, the vehicle overshoots the desired path
and oscillates along it. In order to reduce the oscillations along the path, a larger Ld should be
chosen. However, this might result in larger curvatures near the corners.

Figure 5.20: Pure Pursuit controller, affect of look-ahead distance Ld

Figures 5.21 and 5.22 show the lateral control performance of the Pure Pursuit controllers with
different look-ahead distances. In principle, the smaller the look-ahead distance, the better the
path-tracking performance. Here, the Pure Pursuit controller with Ld = 3m performs better than
the Pure Pursuit controller with Ld = 10m.
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Figure 5.21: Pure Pursuit controller with Ld = 10m
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Figure 5.22: Pure Pursuit controller with Ld = 3m
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Figure 5.23 shows the relationship between the vehicle steering angle and the path curvature.
Similar to the Stanley and PID controller, the Pure Pursuit controller computes a large steering
angles for a large great path curvatures. The path curvature affects the steering angle most
greatly.
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Figure 5.23: Pure Pursuit with Ld = 3.0, steering angle and curvature of the path

Figure 5.24 shows the lateral control performance of the Pure Pursuit controller using Ld = 3m.
As shown in the figure, the Pure Pursuit controller has a good control performance. The Pure
Pursuit controller has a smaller lateral error compared to the Stanley controller. However,
compared to figure 5.19, the Pure Pursuit controller does not perform better than the PID
controller using combined errors.
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Figure 5.24: Pure Pursuit with Ld = 3.0m, lateral and heading errors
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Table 5.6 shows the relationship between the lateral control performance and the look-ahead
distance of the Pure Pursuit controller. Clearly, the Pure Pursuit controller has a better perfor-
mance when it has a smaller look-ahead distance. Figure 5.25 is the visualization of the table
5.6. It shows the relationship more intuitively.

Table 5.6: Comparison of Pure Pursuit controllers using different look-ahead distances

Ld Average lateral error Maximal lateral error Variance
2.0m 0.005m 0.019m 1.467e−5m2

2.5m 0.011m 0.027m 4.031e−5m2

3.0m 0.095m 0.041m 10.2e−5m2

3.5m 0.029m 0.062m 0.0002m2

4.0m 0.044m 0.088m 0.0004m2

4.5m 0.063m 0.120m 0.0008m2

5.0m 0.085m 0.158m 0.0014m2

5.5m 0.112m 0.202m 0.0023m2

6.0m 0.144m 0.251m 0.0036m2

6.5m 0.179m 0.120m 0.0053m2

7.0m 0.220m 0.367m 0.0076m2

7.5m 0.265m 0.433m 0.0107m2

8.0m 0.316m 0.504m 0.0150m2

8.5m 0.371m 0.581m 0.0206m2

9.0m 0.432m 0.664m 0.0280m2

9.5m 0.497m 0.751m 0.0375m2

10.0m 0.568m 0.844m 0.0497m2

10.5m 0.643m 0.943m 0.0651m2

11.0m 0.723m 1.046m 0.0842m2
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Figure 5.25: The relationship between Ld and lateral errors of Pure Pursuit controllers

The results of the experiments show clearly that the look-ahead distance and the path curvature
affects the performance of the Pure Pursuit controller greatly. Therefore, using a adaptive
look-ahead distance computed from the current path curvature, might increase the lateral control
performance and decrease the variance of lateral errors. The Pure Pursuit controller using
adaptive look-ahead distance is introduced in the next section.
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5.1.4 Adaptive Pure Pursuit Controller

As explained in the last section, the Pure Pursuit controller using an adaptive look-ahead distance
might have a better control performance. As shown in the figures in the last section, the lateral
errors and steering angles are greatly influenced by the path curvature and the look-ahead
distance. Therefore, it is necessary to determine the relationship between the lateral errors, the
path curvatures and the look-ahead distances. Next, the optimal look-ahead distance can be
computed from the current path curvature and the desired lateral offset.

By use of path 3 in table 5.2, the vehicle can move along the path having constant curvatures.
Using two-level nested for-loops, the three values Ld , Kr and e are respectively measured and
stored. These values build a curved surface shown in figure 5.26 in the three dimensional space.
As shown in the figure, the greater the curvature and the look-ahead distance, the greater the
lateral error.
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Figure 5.26: Relationship between lateral errors, path curvatures and look-ahead distances

Furthermore, this curved surface can be fitted. The iterative curved surface fitting algorithm can
be found in the Appendix. The fitted curved surface is given as

e = k1 Ld + k2Kr + k3, (5.6)

and the adaptive look-ahead distance is expressed as

Ld =
k2Kr + k2 − e

k1
, (5.7)

where the gains k1, k2 and k3 are a priori determined before the vehicle goes into service. The
look-ahead distance should be computed every time before it is applied in the Pure Pursuit
control algorithm.
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The determined gains of the vehicle in this experiment are given in table 5.7.

Table 5.7: Gains of the adaptive look-ahead distance

k1 k2 k3

0.00857346438284748 -0.004910809672486602 0.0555105524581532

Figure 5.27 shows the lateral control performance of the Pure Pursuit controller with the respec-
tive adaptive look-ahead distance. Compared to the pure pursuit controller with Ld = 3 in figure
5.24, the Pure Pursuit controller with the adaptive look-ahead distance does not have a better
performance. Clearly, an adaptive look-ahead distance is not better than an appropriate constant
look-ahead distance.
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Figure 5.27: Pure Pursuit controller with adaptive Ld , lateral and heading errors

Additionally, the Pure Pursuit controller with the adaptive look-ahead distance is unrealistic. It is
inconvenient to determine the gains k1, k2 and k3. The gains can also change and be incorrect
because of a tiny change of the working environment.
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5.1.5 Combined Pure Pursuit - PID Controller

As explained in section 4.3, combining the Pure Pursuit and the PID controller might increase
the control performance. The combined controller is called Pure Pursuit - Proportional Integral
Differentiation (PP-PID) controller. The principle of combined controllers is introduced in section
4.3, the steering angle is given as

δ = KPPδPP + KPI DδPI D, (5.8)

where δPP is the steering angle computed by the Pure Pursuit controller introduced in section
5.1.3, δPI D is the steering angle computed by the PID controller introduced in section 5.1.2. It is
worth mentioning that KPP and KPI D are the weights used to control the each controller.

There are a total 11 modifiable gains and weights of the PP-PID controller. The applied gains in
these experiments are given in table 5.8.

Table 5.8: Gains of the Pure Pursuit-PID controller

Ke Kth Kpe Kie Kde Kpth Kith Kdth Ld KPP KPI D

0.5 0.5 3.0 0.1 5.0 3.0 0.2 2.0 3.0m 0.5 0.5

As shown in figure 5.28, the vehicle using the PP-PID controller has almost no lateral and
heading error. It can accurately move along the desired path. The maximal error is 0.026m for
curvature radius 10m and the average lateral error is −0.0048m, which meet the requirement of
lateral controllers.
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Figure 5.28: PP-PID controller, lateral and heading errors

Compared to the PID controller using the same gains as in figure 5.19, the PP-PID controller has
no oscillation at the start of the experiment. This is the advantage of the Pure Pursuit controller.
Additionally, the Pure Pursuit controller shown in figure 5.24 can never exactly follow direct paths
between way points, it always has positive lateral errors. However, Use of the property of the
PID controller can compensate for it effectively. Therefore, the PP-PID controller has almost no
lateral error.
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5.2 Real Route

The path 1 is sinusoidal, which has the enormous curvature change and other path information.
However, a sinusoidal path is not enough representative. To check the plausibility, the controller
implemented must also track a real route as reference path. Therefore, a real route is chosen in
Google Maps. As shown in figure 5.29, the route chosen is in Garching near Munich, where the
TUM Garching campus is located.

Figure 5.29: Real route in Garching near Munich

The route is in total 3.46km long. It includes country road, roundabout traffic, route with great
curvature and many other representative information. By use of the special software at FTM, the
route can be discretized in more than 17000 path points. The position of these path points are
given by the software too. The distance between two path points is 0.1m, which is greater as
expected. Use of minimal distance method introduced in section 4.1.4 can effectively reduce the
error and increase the control accuracy.
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Figure 5.30 presents the reconstructed real route in the simulation. Figure 5.31 shows the
performance of the PP-PID controller on the real route. Generally, the PP-PID controller has a
good performance in the path-following maneuver.
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Figure 5.30: Real route path
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Figure 5.31: Real route PP-PID performance

As shown in figure 5.32, the PP-PID controller performs well in path following maneuver. It has
almost no lateral error greater than 0.1m and heading error greater than 0.1 rad. The maximal
lateral error is 0.0966m and the average error is 0.0037m. Variance is 0.0002, which meets the
requirement too.

Figure 5.32: PP-PID on the Real Route, lateral and heading errors
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The relationship between the steering angle and the path curvature is shown in figure 5.33. The
path curvature is still the biggest influence factor for the steering angle of a PP-PID controller.
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Figure 5.33: PP-PID on the Real Route, steering angle and path curvature

The results in this section proves that the PP-PID controller can let the vehicle move along the
real route with high accuracy. The lateral errors and heading errors keep in the low level, which
meets the requirement of the path-following controller.
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5.3 Conclusion

The performance of all controllers implemented in this thesis are presented in the previous
section. This section provides an overview and a comparison of these controllers.

Tabel A.1 presents the controller types and corresponding lateral errors and variances. The
smaller the maximal and lateral errors, the better the control performance. Additionally, the
variance is a significant performance measurement. Variance is the expectation of the squared
deviation of a random variable from its mean. Here, the smaller the variance, the more stable
the control system.

Table 5.9: Comparison of the performance of different controllers

Overview of the lateral errors of different controllers

Controller Average lateral error Maximal lateral error Variance
Stanley 0.332m 0.705m 1.467e−5m2

PID using lateral error 0.0036m 0.1524m 0.0050m2

PID using heading error 0.0065m 0.0575m 0.0010m2

PID using combined errors -0.0004m 0.0175m 9.999e−5m2

Pure Pursuit 0.0052m 0.0193m 1.467e−5m2

Adaptive Pure Pursuit 0.1191m 0.1895m 0.0041m2

Pure Pursuit - PID -0.0048m 0.0258m 0.0001m2

As shown in the table, the PID controller using combined errors has a better performance than
the PP-PID controller. However, the PID controller using combined errors shown in figure 5.19
displays an oscillation at the begin of the experiment. Such oscillation cannot happen in the
vision-based control system. Because if the vehicle begins to oscillate, the camera might not be
able to record the lane marking anymore. Therefore, the PP-PID controller is finally chosen as
the controller applied in the service.

It is worth mentioning that the parameters and gains of above controllers have not been optimally
tuned. Because of the significant amount of the control parameters, the tuning of the gains are a
herculean challenge. By use of Machine Learning techniques such as reinforcement learning,
the optimal control parameters can be automatically found[42].

Additionally, the controllers implemented in this thesis are based on the kinetic single-track
model introduced in section 3.1.1. Use of the controllers based on the dynamic model introduced
in section 3.1.2, such as MPC, might increase the lateral control performance[43].
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6 Overview and Outlook

In this chapter, also the last chapter of the thesis, a short summary and some continuing
concepts and work regarding the presented lateral control methods are given. Section 6.1 is
a summary of the thesis, it includes my personal perspective based on six months working
experience on state-of-the-art lateral control technology. Section 6.2 includes some modern
control strategies which are due to limited time and lack of prior knowledge have not been
researched and implemented in the project.

6.1 Summary of the Thesis

With the rapid developments of computer science, robotics, automatic control, and artificial
intelligence, autonomous and teleoperated driving has attracted more and more focus in recent
years. Autonomous and teleoperated driving entails substantial advantages for industrial, public,
and private transport. Its success is therefore in general interest.

The objective of this thesis is to develop a lateral controller which can compute the steering angle
automatically and let the vehicle move along the planned path accurately. This work presented
an algorithmic solution to tackle this issue.

Before getting into details of the lateral control method, first it is necessary to delimit the
method from related topics and tasks. This work does not include image processing and lane
detection approaches, since another student in project SToRM is searching for solutions in these
areas simultaneously[2]. Because a lane detection module is available, the curve and its fitted
polynomial of lanes were chosen as inputs for the lateral controller.

An accurate vehicle model can improve the lateral control performance substantially. There are
two vehicle models available in this work, kinematic model and dynamic model. Basically, a
dynamic model takes the slip of the tires into consideration, that’s the reason why it can describe
a vehicle motion more accurately. However, the slip of tires can be neglected if a vehicle moves
slowly. It is also necessary to linearize the vehicle model, because the vehicle model is a
nonlinear system.

In the thesis, there are a variety of lateral controllers introduced. There are three controllers im-
plemented: Pure Pursuit controller, Stanley controller and PID controller. The control parameters
and gains can be modified via the control performance, namely the lateral error. It is also helpful
to combine controllers to improve the accuracy.

All vehicles without rear wheel steering suffer from a nonholonomic constraint. In the thesis, the
PID controller using lateral error did not perform as expected. The nonholonomic constraint of
the vehicle may be the mostly responsible.
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6.2 Future works

The lateral control method presented in this thesis was planned, designed, and implemented
within the six-month limitation of a bachelor thesis. It is worth mentioning that additional works
are required to improve the performance of controllers and human machine interface. The future
works from the developer’s perspective mainly include

• Model Predictive Control (MPC)
An basic introduction is already given in the thesis. However, there was not
enough time to design and implement a MPC for this project. Clearly, a well-tuned
MPC is one of the best performed lateral controllers. It has not only good contol
performance, but also robustness in comparison with Stanley. It is worth investing
time and effort on MPC.

• Machine Learning (ML):
ML can be used to tune controllers. In this work, for-loops and nested for-loops
are used to find the best look-ahead distance for Pure Pursuit and the best gain
for Stanley and PID. By use of the ML approach, it is possible to compute the
relationship between the local curvature of paths and the look-ahead distance
much more accurately than when computed by for-loops. Look-ahead distance
is the most significant property of Pure Pursuit. Once the adaptive Look-ahead
distance is correctly chosen, the Pure Pursuit can also show good performance.

Figure 6.1: A control loop of model-based reinforcement learning algorithm[44]

• Human-Machine-Interaction (HMI):
There are several controllers implemented in this work. Basically, users can only
make changes in the ROS subscriber node to switch the controller types. It is also
complicated if users want to modify the control parameters. It would be better when
a graphical user interface (GUI) is available to modify controllers. A GUI is familiar
to many people and intuitively clear. It can improve the human-machine-interaction
efficiently.
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A Chapter Anhang

A.1 Algorithm

In this section, some algorithmic methods used in this thesis is introduced.

A.1.1 Curvature and Curvature Radius

The curvature and curvature radius is given as

κ=
dφ
ds
=

dφ
dx
ds
dx

=
d2 x
dx2

(1+ (dy
dx )2)

3
2

, (A.1)

κr =
1
κ

. (A.2)

1 def calc_curvature_theta(state , cx , cy):

2
3 polynom , diff = poly_Abschnitt(state , cx, cy)

4
5 def f(x):

6 return polynom [0] * (x ** 3) + polynom [1] * (x ** 2) +

polynom [2] * x + polynom [3]

7
8 d1y_dx1 = derivative(f, diff , dx=1e-6, n=1)

9 d2y_dx2 = derivative(f, diff , dx=1e-6, n=2)

10
11 curvature = abs(d2y_dx2)/((1+ d1y_dx1 **2) **(3/2))

12
13 theta = math.atan2(d1y_dx1 , 1.0)

14
15 if d2y_dx2 !=0:

16 curvature_radius = abs (((1 + d1y_dx1 ** 2) ** 1.5) /

d2y_dx2)

17 else:

18 curvature_radius = 0

19
20
21 return curvature , theta , curvature_radius
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A.1.2 Iterative Curved Surface Fitting

1 x1 = array of lookahead distance

2 x2 = array of curvature radius

3 x3 = array of lateral error

4
5 point = []

6
7 for i in range(0,len(x1)):

8 point.append ([x1[i],x2[i],x3[i]])

9
10 ISum = 0.0

11 X1Sum = 0.0

12 X2Sum = 0.0

13 X1_2Sum = 0.0

14 X1X2Sum = 0.0

15 X2_2Sum = 0.0

16 YSum = 0.0

17 X1YSum = 0.0

18 X2YSum = 0.0

19
20 for i in range(0,len(point)):

21
22 x1i=point[i][0]

23 x2i=point[i][1]

24 yi=point[i][2]

25
26 ISum = ISum+1

27 X1Sum = X1Sum+x1i

28 X2Sum = X2Sum+x2i

29 X1_2Sum = X1_2Sum+x1i **2

30 X1X2Sum = X1X2Sum+x1i*x2i

31 X2_2Sum = X2_2Sum+x2i **2

32 YSum = YSum+yi

33 X1YSum = X1YSum+x1i*yi

34 X2YSum = X2YSum+x2i*yi

35
36 m1=[[ISum ,X1Sum ,X2Sum],[X1Sum ,X1_2Sum ,X1X2Sum],[X2Sum ,X1X2Sum ,

X2_2Sum ]]

37 mat1 = np.matrix(m1)

38 m2=[[ YSum],[X1YSum],[X2YSum ]]

39 mat2 = np.matrix(m2)

40 _mat1 =mat1.getI()

41 mat3 = _mat1*mat2

42
43 m3=mat3.tolist ()

44 a0 = m3 [0][0]

45 a1 = m3 [1][0]

46 a2 = m3 [2][0]

47
48 y = a0+a1*x1+a2*x2
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A.2 Controller Performance

This section presents the performance of different controllers in path 2, namely a path with lane
changing course.
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Figure A.1: Stanley controller performance
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Figure A.2: Pure Pursuit controller performance
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Figure A.3: PID controller performance
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Figure A.4: PP-PID controller performance

Table A.1: Comparison of the performance of different controllers in path 2

Overview of the lateral errors of different controllers

Controller Average lateral error Maximal lateral error Variance
Stanley 0.585m 1.492m 0.1829m2

PID 0.071m 0.271m 0.0112m2

Pure Pursuit 0.056m 0.205m 0.0063m2

Pure Pursuit - PID 0.049m 0.179m 0.0049m2

As shown in figures above, the Stanley controller has the worst performance. The Pure Pursuit
controller and PP-PID controller has both better performance than the PID controller. The table
gives the statistic of errors, which is more accurate. It shows that the PP-PID controller has more
accuracy than the Pure Pursuit controller in the path-following maneuver in a lane changing
course.
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