Event-based Non-Rigid Reconstruction from Contours
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We propose a novel approach for reconstructing fast non-rigid object deforma-
tions using measurements from event-based cameras.

I We observe that the majority of events of texture-less object motions are generated at

vent-base on-kIgl . . . .

Tracking Approach the object contour. Our approach estimates the deformation of objects from events
generated at the object contour in a probabilistic optimization framework.

Compared to baseline approaches, our method outperforms them in non-rigid recon-
struction quantitatively and qualitatively.
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Event-based Non-Rigid Reconstruction Measurement Likelihood
e E-Step ™ We use the measurement likelihood in E-step (to calculate the association likelihood) and M-step.
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We formulate the measurement likelihood that an
event x; is caused by a mesh face f; using
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Event-based Camera Events ‘ f

Maximize expected contour

measurement likelihood e We formulate the measurement likelihood on the observed contour as
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M-step: Maximize the expected contour measurement likelihood to update pose parameter.
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. . , Results on Synthetic Data
lteration: optimize pose parameter by alternating E- and M-step.
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Event Stream Simulator

Inspired by state-of-the-art works, we propose our event stream simulator which supports more data
modalities and parametric body models.
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Reconstruction result of our approach (left) and Nehvi et al. [3] (right).
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Quantitative Results on Synthetic Data =
Scenario Method Mean MPJPE (mm) Median MPJPE (mm) , , ,
Nehvi et al. [3] 11.61 10.85 Reconstruction result of our approach (left) and Rudnev et al. [4] (right).
MANO hand
Ours 4.52 4.27 Results on Real Data
Rudnev et al. [4] 11.88 10.73
SMPL-X hand
Ours 1.11 0.76
SMPL-X arm & hand Ours 15.39 3.93 Image
(24 FPS)
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Results on MANO [6] (left), SMPL-X [2] hand (middle), and SMPL-X [2] arm & hand (right) scenario. Nehvi et al. 3
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Contribution: propose the definition of contour events; an EM-based non-rigid reconstruc-
tion approach from contour events; an efficient multi-modal event stream simulator
Limitation: ill-constrained settings, e.g. not enough contour events; not real-time capable yet.
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Future Works: combine events and intensity frames to recover global rigid transformation; assign

event to smaller range of mesh face and use parallel programming to increase efficiency Reconstruction result on DAVIS 240C captured events.
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