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Abstract

Event-based cameras have received much attention in recent years due to their bio-
inspired properties (e.g. high temporal resolution, high dynamic range, etc.). However,
few researchers have addressed the problem of non-rigid object tracking using event-
based cameras. Thus there remains a need for an approach that can reconstruct the
deformation of objects using an asynchronous event stream.

In this project, we first extend existing event stream simulators to generate more
realistic event data more efficiently. Afterward, we report that the event data can be
classified into contour events and texture events. We use the dot product between
the event bearing vector and the mesh face normal to model the contour probability
and distinguish the contour events and texture events. For contour events, we con-
sider a novel system of associating the event to corresponding mesh faces using the
expectation maximization algorithm. For texture events, we use the contrast maximiza-
tion algorithm. We combine the two tracking frameworks to address the individual
limitations.

The experiments and results demonstrate that the proposed contour tracking part
can reconstruct the deformation of texture-less objects (e.g. hand, arm, etc.), because
the generated events are mostly contour events. The combined tracking framework can
perform the rigid reconstruction limited to 2D motion from contour events and texture
events.

The expectation maximization contour tracking approach is our main contribution
to the scientific community. This approach can perform the non-rigid motion recon-
struction using contour events. This can be applied to reconstruct the motion of human
arm and hand using an asynchronous event stream, when the initial template is known
and the global rotation and translation of the body or hand are fixed. Besides, our
proposed contrast maximization texture tracking approach provides a new perspective
on event-based planar 2D motion reconstruction.
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1. Introduction

1.1. Motivation

The capturing and the reconstruction of real-world environments, which enables
VR (Virtual Reality) / AR (Augmented Reality) applications, is one of the most
important research fields in computer vision. Non-rigid dynamic objects are essential
and frequently appearing targets in both computer vision and robotic tasks. However,
the tracking and reconstruction of non-rigid objects is a challenging problem due to
their complex geometric shapes and deformable surfaces.

Recently, several methods of non-rigid tracking and reconstruction from RGB(-D)
have been established. However, the RGB-based methods are far from optimal when
objects have extremely fast motion or have the motion in high dynamic range (HDR)
scenes. When the objects have fast motion or deformation, the captured images are
likely to be blurred. The existing non-rigid tracking methods perform poorly on blurred
images. Furthermore, these methods cannot work when the light conditions are limited,
e.g., in dark scenes. Thus, there remains a need for an efficient method to perform
non-rigid tracking with event-based cameras. Event-based cameras neither suffer from
the image blur, caused by the fast motion, nor the high dynamic range scenario. They
have the potential to outperform conventional RGB cameras in non-rigid tracking tasks
in dark scenes. Nevertheless, till date, only few researchers have addressed the problem
of non-rigid tracking with event-based cameras. Therefore, 3D tracking of non-rigidly
deforming objects from event-based cameras is an emerging research field.

Event-based cameras have received much attention in recent years due to their bio-
inspired properties. Unlike the conventional cameras - that capture images at a fixed
rate, event-based cameras asynchronously measure per-pixel brightness change, and
output a stream of events that encode the spatio-temporal coordinates of the bright-
ness change and their polarity. Event-based cameras offer a considerable number of
advantages in computer vision and robotic tasks over conventional cameras, such as
latency in the order of microseconds, a very high dynamic range, and very low power
consumption [12]. Additionally, event-based cameras capture per-pixel data indepen-
dently. These sensors do not suffer from motion blur. Although event-based cameras
have tremendous advantages, they do not capture intensity frames like standard cam-
eras. For this reason, the existing computer vision algorithms are not applicable to
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1. Introduction

events. Over the past five years, a great number of event-based approaches were carried
out for applications such as feature detection and tracking, optical flow estimation,
simultaneous localization and mapping (SLAM), visual-inertial odometry (VIO), image
reconstruction, etc [12]. Nevertheless, there are few methods that have been proposed
for the 3D non-rigid reconstruction with event-based cameras [26, 35].

1.2. Problem Statement and Contributions

In this project, we propose and implement a novel method that performs the 3D
template-based non-rigid object tracking with event-based cameras. As a template-
based approach, the initial 3D shape of objects and their projection on the image plane
are assumed to be known. The optimization-based method iteratively updates the 3D
geometry of objects until the deformed mesh correctly describes the corresponding
events. In our project, we report that the events of objects can be classified into texture
events and contour events. For texture-less objects, most events are generated by the
motion of boundary edges. Thus, we propose a method that can track the deformation
using contour events. Besides, we propose a method to deal with texture events. To
the best of our knowledge, none of the previous event-based non-rigid tracking works
[26, 35] distinguish texture events and contour events. Thus, they do not reconstruct
the deformation using individual events. Hence our work can probably bring a novel
contribution to the scientific community.

1.3. Outline

An intuitive sequential structure of the whole thesis can be found in figure 1.1. We also
provide a summary of each chapter here:

The first chapter gives a brief introduction to the motivation of this work. After that,
the objective and structure of the thesis are presented.

The second chapter begins with the state-of-the-art literature in event-based computer
vision relevant to the objective of the thesis. Then, several non-rigid tracking and
reconstruction methods based on different data modalities are presented. At the end
of this chapter, we present two most relevant works to our method, which reconstruct
non-rigid motion of hands using event-based cameras.

Next, the background tools deployed in our work are introduced. We present the
object models that we used as templates to reconstruct the rigid and non-rigid motion.
Then, several techniques related to our tracking method are introduced. Two basic
algorithms are shown at the end of this chapter, which are essential in our work.

2



1. Introduction

Explaining the principle and the function of our event stream simulator are a part of
the fourth chapter. It explains explicitly how synthetic events are generated. Besides, we
compare our simulator thoroughly with other state-of-the-art event stream simulators,
and explain why our simulator is more efficient and user-friendly.

We describe our tracking framework in the fifth chapter. We propose non-rigid
motion reconstruction methods and explain the principle and limitation of them in
detail in the chapter.

The experiments and results in our work can be found in chapter six. We evaluate
our tracking framework quantitatively on synthetic data and qualitatively on real data.
Our analysis appears at the end of this chapter.

Finally, we summarize our work and give an overview of the potential future works
in the last chapter.

3



1. Introduction

Figure 1.1.: Structure of the master thesis.
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2. Related Work

2.1. Event-based Cameras

Event-based cameras arose from the discipline of neuromorphic engineering, which
tries to solve a complex problem: figuring out how the brain works and then replicating
it on a chip [12]. As a bio-inspired sensor, event-based cameras capture the logarithmic
pixel-wise brightness change asynchronously, like how the retina works in our brain.
Thus, the outputs of traditional cameras and event-based cameras are completely
different: traditional cameras acquire the visual information of a scene as a stream
of intensity frames at a constant rate, while event-based cameras have no notion of
images since each pixel operates independently. Consequently, in a static scene with
no illumination changes, a traditional camera outputs the same image on each frame.
By contrast, an event-based camera produces no output at the same scene. figure
2.1 explains the output of event-based cameras intuitively: when the dot is rotating,
a space-time spike event stream is captured. The event stream consists of multiple
events encoded with {x, y, t, pol}, to indicate the pixel location, the timestamp, and the
polarity of each event.

Figure 2.1.: Comparison of output between conventional cameras and event-based
cameras. When the dot is rotating, conventional cameras have images at
constant frame rate as output, while event-based cameras have continuous
event stream as output. Image from [33].

5



2. Related Work

Event-based cameras provide significant advantages over conventional cameras:

• High temporal resolution: Event-based cameras are data-driven sensors, where
output depends on the amount of motion or brightness change in the scene.
Events are timestamped with microsecond resolution (1 MHz) and are transmitted
with sub-millisecond latency, which make these sensors react quickly to visual
stimuli [12]. As comparison, conventional cameras usually have frequency of 30 -
60 HZ. High temporal resolution ensures that event-based cameras do not suffer
from motion blur while capturing fast motion in the scenes.

• High dynamic range: Event-based cameras have a very high dynamic range (>
120 dB), which exceeds the 60 dB of high-quality conventional cameras. The
photoreceptors of pixels operate in logarithmic scale. Therefore, event-based
cameras can adapt to very dark as well as very bright stimuli, like biological
retinas.

• Low power and storage consumption: event-based cameras only capture pixel-level
brightness change, which means it avoids redundant data. Power and storage are
only used to process pixel brightness changes.

2.2. Event-based Computer Vision

Since event-based cameras do not have images as output, the existing computer vision
algorithms for conventional cameras cannot be directly applied to event-based cameras.
Recently, a huge amount of computer vision tasks based on event cameras are solved.
In addition, several event-based frameworks are proposed for computer vision tasks.
Section 2.2.1 gives a brief overview of existing event-based frameworks, while several
popular event-based computer vision tasks are introduced in section 2.2.2.

2.2.1. Event-based Measurement Models

Event Generative Model

Bryner et al. [8] proposed the linearized event generative model, which can predict the
brightness change of a tiny time window using the image gradient and the optical flow:

∆L (x; t) ≃ − ⟨∇L (x; t) ,V (x; t)⟩∆t. (2.1)

It is derived from the brightness constancy assumption [39], and the derivation can be
found in equations from 4.2 to 4.6.

6



2. Related Work

The error function based on event generative model can be formulated as

min
X
∥∆L(u)− ∆L̂(u; X)∥2

L2(Ω), (2.2)

where ∆L(u) denotes the measured brightness change, which is accumulated from
captured events. In addition, u denotes the pixel location, and Ω represents the image
domain. ∆L̂(u; X) is the predicted brightness change according to the event generative
model. In Bryner’s approach [8], X is the camera pose which calculates the image
gradient and optical flow. The error function is minimized over X to solve for the
camera pose which generate the captured events.

In addition to the above-mentioned camera ego-motion tracking method [8], Li and
Stückler [21] deployed the event generative model in 6-DoF object pose tracking. The
performance proves that the event generative model generalizes well to other computer
vision tasks.

It is worth mentioning that the image gradient is indispensable in event generative
model: besides asynchronous event stream, an aligned intensity image frame is always
required. Most dynamic vision sensors from iniVation 1 provide both events stream and
gray-scale images. However, the event generative model is not applicable to event-based
cameras like Prophesee cameras 2, which only output high-resolution events but no
intensity frames. Thus the event generative model is not used in our approach, because
we want to reconstruct the deformation only based on a pure event stream.

Contrast Maximization Principle

Gallego et al. [14] proposed a unifying contrast maximization framework for asyn-
chronous event stream. The core idea of this framework is a general objective function
for event data, which has the potential to provide the self-supervision of goal tasks. In
recent years, it is widely used in self-supervised event-based computer vision tasks,
such as optical flow tracking and camera ego-motion estimation [14, 43].

Recently, several studies on the sharpness quality of IWE have been published.
Gallego et al. [13] discovered and compared more than 20 different focus loss functions,
and concluded that variance is a computational efficient but not accurate reward
function. Stoffregen and Kleeman proposed reward function SoSA (Sum of Suppressed
Accumulations) [38], which follows sparsity rewarding and is more robust to noise.

The contrast maximization principle inspires a part of the motion reconstruction
method in our project as well. A detailed explanation of unifying contrast maximization
framework can be found in section 3.6, while the contrast maximization based non-rigid
objects tracking method we proposed is introduced in section 5.4.

1https://inivation.com/
2https://www.prophesee.ai/
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2. Related Work

2.2.2. Event-based Tasks

Optical Flow Estimation

Optical flow estimation using event-based cameras approximates a continuously time-
varying velocity field in image coordinates. Bardow, Davidson, and Leutenegger [2]
jointly reconstructed intensity images and estimated flow based on events by minimiz-
ing their objective function. However, the accuracy of their approach heavily relies on
the quality of the reconstructed image. Gallego et al. [14] and Zhu et al. [43] proposed
unsupervised optical flow estimation based on the contrast maximization principle.
Gehrig et al. [15] proposed E-RAFT to estimate the dense optical flow from events with
a fully-supervised learning method.

Visual Odometry / SLAM

Taking into account above-mentioned advantages of low latency, low power consump-
tion, and high dynamic range, event-based cameras are suitable to be deployed on
robotics platform for real-time SLAM applications. Kim, Leutenegger, and David-
son [17] simultaneously reconstructed the scene and tracked the 6-DoF camera pose
using Kalman filters. Rebeq et al. [32] fused event stream and IMU measurements to
perform visual-inertial odometry. Rosinol et al. [40] combined event stream, intensity
images, and IMU measurement to perform SLAM and to control a quadrotor. The result
shows that the SLAM system using event-based cameras outperforms conventional
systems in HDR and high-speed scenarios.

Object Pose Estimation

Unlike two previous event-based computer vision tasks, which have been explored and
well studied, object pose estimation using event-based cameras is an emerging research
field. Li and Stückler [21] proposed a novel approach that tracks the 3D motion of
objects in a combined way from measurements of event and frame-based cameras. It
deployed the event generative framework introduced in 2.2.1.

2.3. Non-Rigid Tracking and Reconstruction

Methods for 3D reconstruction of non-rigid objects can be categorized into SfT (Shape
from Template) and NRSfM (Non-Rigid Structure from Motion). SfT methods recon-
struct the deformed shape of an object from a single image and the object’s textured
3D model. The 3D shape of the object, so-called template, is assumed to be known
in advance. The SfT methods can be categorized into analytical and energy-based

8



2. Related Work

methods. Among analytical methods, the focus is on the isometric deformation, which
implies that the geodesic distance between any two points on the surface remains
constant, or the conformal deformation where angles are preserved on the surface
of the shape [4]. Energy-based methods [27] jointly minimize the shape energy and
the reprojection error obtained from the image correspondences. These optimization
methods are appropriate to handle sequential data association with robust kernels to
deal with outliers. NRSfM methods reconstruct the non-rigid surface of the objects
and the corresponding camera poses from monocular image sequences using multi-
frame 2D correspondences computed among the input views. In NRSfM as [28], the
rigidity constraint of the normal SfM method is replaced by constraints on the object’s
deformation model.

Lamarca et al. [20] proposed DefSLAM, which is a parallel algorithm composed
of a front-end SfT deformation tracking thread running at a higher frame rate and
a back-end NRSfM to compute SfT template running at a slower frame rate. The
DefSLAM estimates the camera pose and the deformation of the scene simultaneously.
While exploring unseen areas, the DefSLAM estimates a template for the new zone.
Besides, it periodically re-estimates the template to adapt it better to the observed scene.
It is worth mentioning that the DefSLAM performs in deforming scenes in real-time.

Recently, several neural non-rigid tracking and reconstruction methods have been
proposed. Sidhu et al. [37] formulated a fully differentiable dense neural NRSfM
approach with an auto-decoder-based deformation model based on monocular RGB
input. Božic et al. [7] proposed an end-to-end learnable, differentiable RGB-D based
non-rigid tracker in a self-supervised manner. The non-rigid tracker deployed a
correspondence prediction network to predict the dense correspondence from the
source to the target image frame. A differentiable optimizer solves for the deformation
parameter according to the pixel correspondences. However, none of these neural-
network-based methods perform non-rigid tracking in real-time.

2.4. Event-based Non-Rigid Tracking

2.4.1. Event Simulation Framework

Nehvi et al. [26] proposed a template-based non-rigid tracking framework using the
event generative model (Sec. 2.2.1). Given the known previous hand parameter θt−1 and
the desired hand parameter θt, two images can be rendered. The thresholding function
g(x) can generate an event for each pixel according to the difference of two images
in a smooth and differentiable manner. The generated event stream are compared
with captured events stream. The difference between the input event stream and the
generated event stream is penalized to optimize the desired hand parameter. The

9
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gradient is propogated back to the pose parameter θt using differentiable rendering.
As shown in figure 2.2, the generated event stream and input event stream are stacked
to frame, which allows the pixel-wise comparison.

Figure 2.2.: Overview of Nehvi’s non-rigid objects tracking framework. It uses a differ-
entiable event stream simulator to generate events and compares with the
captured events. The difference is minimized to optimize the objects pose θ.
Image from [26].

The bottleneck of Nehvi’s method [26] is the quality of the generated event. As
illustrated in figure 2.2, the generated events are calculated from two rendered images.
As introduced in section 3.2, the rendering process takes lights and the texture map of
the mesh as inputs. However, these two properties are difficult to adjust for scenarios
where events are captured. Besides, the simulator renders images with a black back-
ground and generates events according to that feature. The most essential drawback
is, when the capturing scenario doesn’t have the pure black background, the captured
events are not the same as the generated events, which leads to non-robustness in the
tracking. Unlike the Nehvi’s approach [26] which only uses plain 2D event information,
our method introduced in Chapter 5 relies on the 3D geometry which is inferred from
events. Thus, it doesn’t have above-mentioned limitations.

2.4.2. Learning-based Approach

Rudnev et al. [35] proposed a fully supervised deep learning framework for events-
based hand tracking. Since it is difficult to obtain the ground-truth hand parameter
label, they used a synthetic event stream to train the neural network model. The
process is shown in figure 2.3: the input event stream is represented with LNES
(Locally-Normalised Event Surfaces), which encodes all events within a fixed time

10
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window as an image I ∈ RW×H×2. A ResNet-18 network is trained with the event input
representation I to regress the hand parameter θ. A constant-velocity Kalman filter is
deployed on the raw network output to perform the temporal filtering and to ensure
the smoothness of the tracking.

Figure 2.3.: Overview of Rudnev’s EventHand framework. Asynchronous events stream
is represented using LNES and fed into the trained hand pose prediction
network to predict hand pose parameters. Image from [35].

The main limitation of Rudnev’s method [35] is that the network can only be trained
on synthetic data. Additionally, it is only applicable for MANO-based (Sec. 3.1.1)
hand tracking. Thus, it does not generalize to other non-rigid object tracking. In
contrast, our method presented in chapter 5 has a well-defined objective function. As
an optimization-based method, it does not require the training on the synthetic data
and is not only restricted to the MANO hand model [34].

2.5. Event Representation

As introduced in section 2.1, an event stream contains multiple asynchronous events
encoded with {x, y, t, pol}. Usually, several events in a spatio-temporal window are
stacked to formulate event images, which could be used as inputs of neural networks
[35, 43] or reduce the computational complexity [32, 40].

Recently, several event representations are proposed. Rudnev et al. [35] presented
LNES, which encodes asynchronous events within a fixed time window as an two
channel image. Positive events and Negative events are recorded in separate channels
so that the polarity of events are preserved. Zhu et al. [43] discretizied the time domain
to represent events as a three-dimensional volume. The evens are inserted into the
volume using a linearly weighted accumulation. Rebeq et al. [32] and Vidal et al. [40]
stacked the fixed number of events into each spatio-temporal window. The temporal
size of each window is inversely proportional to the event rate. to the event rate. In our
work, we stacked the fixed number of events into each spatio-temporal window too.
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This chapter introduces the methods, tools, and algorithms which are used in the project.
The 3D object template model is presented in section 3.1. Section 3.2 introduces how
the gradient is propagated in rendering and section 3.3 explains the hyperparameter
tunning framework we deployed. Besides, the computational efficiency is important in
both data simulator and non-rigid motion reconstruction processes. The tools which
are deployed to increase computational efficiency are introduced in section 3.4. Section
3.5 presents the analytical geometry background which is essential in our work. In
section 3.6, the contrast maximization principle for event data is explained. At the end
of the chapter, a brief introduction of the expectation maximization algorithm is given,
which is an essential machine learning algorithm. Both contrast maximization and
expectation maximization principles are elaborated in chapter 5.

3.1. Non-Rigid Object Model

As a template-based non-rigid method, the template model is one of the most essential
component. In our project, we performed the deformable motion reconstruction on
both parametric 3D human body model, SMPL-X, and general triangle mesh models.

SMPL (A Skinned Multi-Person Linear Model) [25] is a parametric human body
model that realistically represents a wide range of human body shapes and can be
posed with natural pose-dependent deformations. The template body mesh model
has n = 6890 vertices and k = 23 joints. Shape parameter β controls the shape of
the body. Pose parameter θ is defined by 72 parameters, which denote the axis-angle
representation for all joints and the root orientation.

Figure 3.1 describes intuitively the SMPL model expression. Begin with a canonical
body model T , adding the shape blend shapes and pose blend shapes controlled by
the the shape and pose parameters can express arbitrary reasonable human body.

MANO (hand Model with Articulated and Non-rigid defOrmations) [34] is a differ-
entiable hand model that can map the hand pose parameter and shape parameter into
a 3D hand mesh. In MANO, the pose and shape are defined as the linear combination
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Figure 3.1.: Template, shape blend space, and pose blend space of SMPL model. Image
from [25].

of a set of vertex offsets. The shape blend parameter is computed from a set of regis-
tered hand shaped, and normalized to the zero pose using PCA (Principle Component
Analysis). Each hand posture is parameterized by a set of principle components coeffi-
cients that map a differentiable low-dimensional manifold. The effect of the first ten
principle components in the pose space are shown intuitively in figure 3.2.

In MANO, the hand surface is represented by a manifold triangle mesh M ≡ (V, F)
with n = 778 vertices V =

{
vi ∈ R3 | 1 ≤ i ≤ n

}
and 1538 faces F. The face F indicates

the connection of the vertices in the hand surface, where the face topology is considered
to be fixed. Given the mesh topology, a set of k = 15 joints J =

{
ji ∈ R3 | 1 ≤ i ≤ k

}
can be directly inferred from the hand mesh.

Figure 3.2.: PCA pose space. The left-most image presents the mean pose. The effect
of the first ten principle components are shown in the rest of the columns.
Image from [34].

FLAME (Faces Learned with an Articulated Model and Expressions) [22] is a para-
metric head model. In SMPL-X, the shape of the head is defined in the joint shape
parameter β. We use facial expression parameters ψ to present the rich facial expression.
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Figure 3.3.: Shape, pose, and expression of FLAME head model. Image from [22].

3.1.1. SMPL-X Human Body Model

SMPL-X (SMPL eXpressive) [29] is a 3D model of the human body that extends SMPL
body model with the fully articulated hands and an expressive face. As a parametric
human body model, SMPL-X has enormous essential advantages: compatibility with
graphics software, simple parametrization, small size, efficiency, differentiable, etc.
SMPL-X is the combination of the SMPL, the MANO, and the FLAME model, which
are introduced in following paragraphs.

SMPL-X uses standard vertex-based linear blend skinning with learned corrective
blend shapes, has n = 10, 475 vertices and k = 54 joints. SMPL-X includes joints for
the neck, jaw, eyeballs and fingers, etc. SMPL-X is parametrized by pose parameter θ,
shape parameter β, and facial expression parameter ψ. The pose parameter θ consists
of the θ f for jaw joints, the θh for finger joints, and the θb for the remaining body joints.
The shape parameter β controls the shape of the body, the face, and both hands. The
facial expressions parameter ψ expresses the different facial expression. As illustrated
in figure 3.4, the body, face, and hands parameters in pose and shape space can model
the human accurately.

3.1.2. General Mesh Model

Two common file formats for storing single meshes are .obj and .ply files. The obj
file has a standard way to store extra information about a mesh. In PyTorch3D [30], an
obj file can be extracted to variables verts, faces, and aux. The verts indicates the
3D coordinates of vertices, represented with a (V,3)-tensor. The faces.verts_idx is
an (F,3)-tensor of the vertex-indices of the corners of the faces. V and F denote the
number of vertices and faces, respectively. The aux is an object contains normals, uv
coordinates, material colors and textures if they are available in the loaded obj file.
Using the extracted vertices, faces, and textures information, a textured mesh can be
generated and used in PyTorch3D.
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Figure 3.4.: SMPL-X can jointly model the human body, face, and hands. Image
from [29].

YCB Benchmarks (Yale-CMU-Berkeley Benchmarks) is an object and model set
which consists of objects of daily life with different shapes, sizes, textures, weight and
rigidity [9]. The set consists of 77 objects divided into 5 categories: Food items, kitchen
items, tool items, shape items, and task items. An overview of all objects can be found
in figure 3.5. For each object, RGB-D images, high-resolution RGB images, segmentation
masks, calibration information, and textured 3D mesh models are available. Thus, we
choose objects in YCB Benchmarks as the general mesh model in our project.

Figure 3.5.: YCB Benchmarks - object and model set. Image from [9].
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3.1.3. Mesh Model Representation

A polygon mesh model consists of geometric vertices and face elements. Usually, mesh
objects are saved in .obj file, which is a geometry definition file format first developed
by Wavefront Technologies for its Advanced Visualizer animation package. In this
project, the canonical SMPL-X model and YCB Benchmarks models are both provided
in .obj format.

A .obj file may contain geometric vertices, vertex normals, and polygonal faces.
For the texture of the model, texture coordinates, materials, and the corresponding
texture map are required. A textured mesh can be constructed from the given geometric
information and the corresponding texture data.

Figure 3.6 intuitively illustrates the process of loading a mesh model from the .obj
file and the texture map. The .obj provides geometric vertices v, faces information f,
and texture coordinates vt of the SMPL-X model in canonical shape and pose. Vertices
v = [x, y, z] provide the location of a vertex. Faces f = [v1/v2, v2/v3, v1/v3]
indicate the three edges which determine the face, while each edge is determined by
two vertices. With the vertices location and faces information, a geometrical mesh
model can be constructed as in the left figure in 3.6. Texture coordinates vt = [u, v]
provide the UV coordinate of each vertex. The RGB value of each vertex is determined
by its UV coordinate on the corresponding texture map. A texture map for SMPL-X
model is shown in the right figure in 3.6. Examples of textured mesh models can be
found in Appendix B.1, and B.3.

Figure 3.6.: SMPL-X geometric mesh model (left) and a texture map in the correspond-
ing UV coordinate (right). Image of the texture map from [11].
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3.2. Differentiable Renderer

Rendering is a core part of computer graphics that converts 3D models into 2D images.
It’s a natural way to bridge the gap between 3D scene properties and the pixels of a 2D
image. Traditional rendering engines are not differentiable. For this reason, they can’t
be incorporated into deep learning pipelines. Recently, Liu et al. has shown how to
build a differentiable renderer that integrates with deep learning [24].

In this project, we use PyTorch3D, which is an efficient, modular differentiable
renderer. As a differentiable renderer, it automatically accumulates gradients to all
inputs. The following figure describes all the components of the rendering pipeline.

Figure 3.7.: Architecture of a PyTorch3D renderer. Image from [30].

A renderer in PyTorch3D takes the camera, the mesh, and the light as input, can
generate a rendered image which contains the gradient to all inputs as output. As
illustrated in figure 3.7, a renderer in PyTorch3D is composed of a rasterizer and a
shader. The rasterizer is thoroughly explained in section 3.2.1, while the shader is
introduced in section 3.2.2.
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3.2.1. Rasterizer

Rasterization is the task of taking an image described in a vector graphics format
and converting it into a raster image [39]. Compared to ray tracing, rasterization is
a extremely fast process of computing the mapping from scene geometry to pixels.
However, it does not prescribe a particular way to compute the color of those pixels.
Figure 3.8 shows how PyTorch3D rasterizes a polygon face of a polygon mesh to pixels
on 2D image plane.

Figure 3.8.: Rasterize a triangle of a polygon mesh. Image from [30].

In PyTorch3d, the rasterizer takes mesh model as input, produces 4 outputs of desired
image size:

• pix_to_face: gives the indices of the nearest faces at each pixel.

• zbuf: gives the NDC z-coordinates of the nearest faces at each pixel.

• barycentric: gives the barycentric coordinates in NDC units of the nearest faces
at each pixel.

• pix_dists: gives the signed Euclidean distance (in NDC units) in the x/y plane
of each point closest to the pixel.

3.2.2. Shader

As illustrated in figure 3.7, a shader takes outputs of rastarization, mesh texture
properties, and lights as input, applies shading and outputs a rendered image of
the mesh. Phong shader is the most commonly used shader which applies per pixel
shading [41]. It first interpolates the vertex normals and vertex coordinates using the
barycentric coordinates to get the position and normal at each pixel. Then, it computes
the illumination for each pixel. The pixel color is obtained by multiplying the pixel
textures by the ambient and diffuse illumination and adding the specular component.
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3.2.3. Gradient Flow Map

Thanks to the differentiable parametric mesh model, rasterizer, and shader, the gradient
of outputs w.r.t. all desired inputs are automatically accumulated and available. In our
non-rigid hand tracking task, the gradient w.r.t. pose parameter, global rotation, and
global translation is available.

Figure 3.9.: Gradient Map from input MANO parameters to renderer outputs.

As illustrated in figure 3.9, gradient is first propagated over the MANO model, which
means all mesh vertices contain gradient w.r.t. input hand parameters. PyTorch3D
renderer takes hand mesh as input, and generates 4 outputs. The gradient of renderer
outputs w.r.t. input hand parameters θ can be determined using chain rule:

∂ output
∂θ

=
∂ output
∂ mesh

· ∂ mesh
∂θ

. (3.1)

It is worth mentioning that the output pixel_to_face contains integer indices, so it
can’t have gradients. Besides, all outputs have automatic gradient w.r.t. inputs, which
requires no manual gradient calculation and therefore makes optimization simplified.

3.3. Hyperparameter Tuning

As an optimization-based tracking framework, finding the optimal hyperparameters is
a key to the accurate result. In our project, we deployed optuna [1] to tune hyperpa-
rameters in the tracking framework. Optuna implements sampling algorithms such as
Tree-Structured of Parzen Estimator[5]. It can determine which hyperparameter values
to try next based on a historical record of trials. We present how optuna is used in our
work in section A.1.
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3.4. Computational Efficiency

In this project, we constantly look for ways to accelerate the computationally intensive
tasks, such as the event simulator and the non-rigid object tracking. Most of our tasks
involve image processing, which means that we are particularly interested in anything
that makes matrix computations — sometimes over fairly large tensors easier and faster.
We used two methods to increase the computational efficiency, namely JIT-compilation
in section 3.4.1 and parallel programming using GPGPU in section 3.4.2.

3.4.1. JIT Compilation

Since Python is commonly used in deep learning and differentiable rendering, we use
Python as the main programming language in our project. However, Python by nature
is not a language with a compiler. The primary factor in Python’s short-comings is
usually its speed when working with large amounts of data and recursively training
machine-learning models.

JIT (Just-In-Time) compilation is a compiler feature that allows a language to be
interpreted and compiled during runtime, rather than execution. That means a JIT
compiler will be compiling the language as it is executing the logic before the code is
compiled.

Numba [19] is an open-source JIT compiler that uses the standard LLVM (Low
Level Virtual Machine). It translates a subset of Python and NumPy code into fast
machine code: first analyses Python code, then turns it into an LLVM intermediate
representation, and finally creates bytecode for the selected architecture. In our project,
we implemented several frequently-called functions with Numba to increase efficiency.

3.4.2. Parallel Programming

CUDA (Compute Unified Device Architecture) is a parallel computing platform and
API that allows software to use certain types of GPU for general purpose processing
with an approach called GPGPU (General Purpose computation on Graphics Processing
Unit). CUDA is a software layer that gives direct access to the GPU’s virtual instruction
set and parallel computational elements, for the execution of computing kernels.

Our project is mainly implemented in PyTorch, which uses GPU to accelerate the
process. All PyTorch tensor operations are available on CPU (implemented in C++) and
on GPU (implemented in CUDA). In our project, all events are processed processed
parallely with the implementation in CUDA operation with PyTorch.
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3.5. Analytic Geometry

Analytic geometry plays an essential role in our project. This section provides the back-
ground knowledge of analytic geometry, which is applied in the tracking algorithms in
chapter 5.

3.5.1. Distance between Line and Point

The smallest distance between a line and a point in 3D can be considered as the problem
of finding the projection of the point on that line. The projection can be computed
using the dot product.

The direction of vector s of the line spanned by points a1a2 is the difference of a1
and a2, divided by their length,

s =
(a2− a1)
||a2− a1||L2

. (3.2)

A vector q from point b1 to a1 is determined by

q = b1− a1 (3.3)

The projection p of point b1 on line a1a2 can be calculated from the dot product
between the vector a1b1 and vector a1a2,

p = a1 + (q⊤s) · s. (3.4)

Finally, the minimal distance between the point and line is

d = ||p− b1||L2 (3.5)

3.5.2. Distance between Line and Line Segments

As illustrated in the right figure in 3.10, there are two cases of the minimal distance
between two lines in 3D: the closest point is inside of the line segment (as in b1b2) and
the closest point is outside of the line segment (c1c2). Considering our method, namely
calculating the minimal distance between an unprojecting ray and an edge of a triangle
in 3D, we only perform the clamping for line segments (b1b2 and c1c2, considered as
mesh face edges) but not for the line (a1a2, considered as a bearing vector).

The vector of line a1a2 and line segment b1b2 can be given as

s =
(a2− a1)
||a2− a1||L2

, q =
(b2− b1)
||b2− b1||L2

. (3.6)
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Figure 3.10.: Point-Line-Distance (left) and Line-Line-Segments-Distance (right).

The normal of the spanned surface by two lines can be represented with the cross
product,

v = s× q. (3.7)

If two lines are parallel, the norm of cross product v is 0. If two lines don’t overlap,
there is a closest point solution. Otherwise, there are infinite closest positions having
the same minimal distance. In the case of two lines are parallel, the distance between
them is

d = ||((s⊤(b1− a1)) · s + a1)− b1||L2 (3.8)

If two lines criss-cross as a1a2 and b1b2 in figure 3.10, the problem turns into the
calculation of the projected closest points of one line on the other line. The projected
closest point on segment A is

pa = a1 +


s ·

∣∣∣∣∣∣
b1− a1

q
v

∣∣∣∣∣∣
||v||L2


, (3.9)
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and the projected closest point on segment B is

pb = b1 +


q ·

∣∣∣∣∣∣
b1− a1

s
v⃗

∣∣∣∣∣∣
||v||L2


. (3.10)

After having two closest projection points and considering all clamping cases, the
minimal distance between a1a2 and b1b2 is

d = ||pa − pb||L2. (3.11)

3.5.3. Intersection between Line and Plane

As in figure 3.11, given a line spanned by two points a1 and a2, and a plane spanned
by three points b1, b2, and b3, we can determine whether and where does the line
intersect the plane in 3D.

The vector of edge b1b2 and edge b2b3 can be given as

s =
(b2− b1)
||b2− b1||L2

, q =
(b3− b2)
||b3− b2||L2

. (3.12)

Again, the normal of the plane is the cross product of two vectors spanning the plane,

v = s× q. (3.13)

The normalized direction vector of the line is

r =
a2− a1

||a2− a1||L2
(3.14)

If the plane and the line are parallel, namely the dot product between the plane
normal and the line is close to 0, there won’t be any intersection. Otherwise, we can
calculate intersection p with

p = a1 +
v⊤a1 + v⊤b1

v⊤r
· r (3.15)
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Figure 3.11.: Intersection between a line and a plane in 3D (left) and its barycentric
coordinate (right).

3.5.4. Barycentric Coordinate

Having a 3D planar point p and 3 non-collinear points b1, b2, and b3 on the plane, we
can calculate the corresponding barycentric coordinate.

The vectors of edges of the triangle are

s = b2− b1,

q = b3− b1,

r = p− b1,

(3.16)

respectively.
The barycentric coordinate of plane point P with respect to triangle (b1, b2, b3) is

given in v, w, u, with

v =
(q⊤q) · (r⊤s)− (s⊤q) · (r⊤q)
(s⊤s) · (q⊤q)− (s⊤q) · (s⊤s)

,

w =
(s⊤s) · (r⊤q)− (s⊤q) · (r⊤s)
(s⊤s) · (q⊤q)− (s⊤q) · (s⊤q)

,

u = 1.0− v− w.

(3.17)

Using the barycentric coordinate, point P can be accurately represented by positions
of triangle corners as

P = v · b1 + w · b2 + u · b3 (3.18)

24



3. Background

3.6. Contrast Maximization

Gallego et al. [14] proposed that the problem of extracting information from events
can be interpreted as the data association process, i.e., establishing which events were
triggered by the same scene edge. Since moving edges define point trajectories (Fig.
5.7) on the image plane, the corresponding events should be triggered along these
point trajectories. As illustrated in figure 3.12, events caused by the same moving edge
pattern can be drawn on a point trajectory.

Figure 3.12.: Point trajectory of events. Image from [14].

The core idea of the contrast maximization framework is to warp all events along the
point trajectory to a reference frame. Ideally, the events on the same point trajectory
will be warped back to one point. Thus, the reference frame, also called IWE (Image of
Warped Events), will have the highest sharpness when the point trajectory is estimated.
Practically, point trajectories are parametrized by the desired motion parameter θ.
The variance of the IWE describes the sharpness. A unifying contrast maximization
framework can be formulated as

max
θ

f (θ) = max
θ

σ2(H(x; θ))
.
= max

θ

1
Np

∑
i,j

(
hij − µH

)2 , (3.19)

where H(x; θ) denotes the IWE, which is parameterized by desired motion parameter
θ. hij denotes the value at pixel ij on the IWE. σ2(·) is the operation that calculates the
variance. The image variance (contrast) of warped events measures how well events
agree with the candidate point trajectories. It should be maximized to solve for the
parameters.

According to [14], an additional benefit of the optimization-based motion compen-
sation framework is that it produces motion-corrected event images. These motion-
corrected event images are more appropriate than original event images as input to com-
plex processing algorithms [14] such as visual-inertial data fusion, object recognition,
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etc. An intuitive comparison between an input event frame and its motion-corrected
frame can be found in figure 3.13: the input event frame is blurred and has low contrast.
Conversely, its motion-corrected frame is sharp and has high contrast, which is more
suitable for further event processing tasks.

Figure 3.13.: Comparison between an input event frame (left) and its motion-corrected
frame (right). Images from [14].

3.7. Expectation Maximization

Probabilistic models can have full observable variables, but can also contain latent
variables, which are unknown. When a probabilistic model contains latent variables, the
naive MLE (Maximum Likelihood Estimation) cannot be directly deployed to estimate
the model parameter.

The goal of the EM (Expectation Maximization) algorithm is to find maximum
likelihood solutions for models with latent variables [6]. The log likelihood function is
stated in equation 3.20:

ln P(X | θ) = ln

{
∑
Z

P(X, Z | θ)

}
, (3.20)

where the set of all observable data is denoted by X, the set of all latent variables is
denoted by Z, and the set of all model parameters is denoted by θ. For each observation
in X, the corresponding value of the latent variable Z is considered. In other words, the
actual observed data X is incomplete, and introducing the latent variable Z makes the
data set {X, Z} complete.

However, the complete data set {X, Z} are usually unknown, only the incomplete
data X is given. The knowledge of latent variables Z is only given by the posterior
distribution P(Z | X, θ). Because the complete-data log likelihood is not available, it is

26



3. Background

alternatively treated as the expected value under the posterior distribution of the latent
variable. The expectation of the complete-data log likelihood is written as:

Q
(

θ, θold
)
= ∑

Z
P
(

Z | X, θold
)

ln P(X, Z | θ), (3.21)

where we introduce a distribution q(Z) defined over the latent variable. The following
decomposition holds independently from the choice of q(Z):

ln p(X | θ) = L(q, θ) + KL(q∥p), (3.22)

where L(q, θ) and KL(q∥p) are defined as

L(q, θ) = ∑
Z

q(Z) ln
{

p(X, Z | θ)

q(Z)

}
, (3.23)

KL(q∥p) = −∑
Z

q(Z) ln
{

p(Z | Xθ)

q(Z)

}
. (3.24)

By substituting q(Z) = p
(

Z | X, θold
)

into Equation 3.23, the L(q, θ) has the form

L(q, θ) = ∑
Z

p
(

Z | X, θold
)

ln p(X, Z | θ)−∑
Z

p
(

Z | X, θold
)

ln p
(

Z | X, θold
)

= Q
(

θ, θold
)
+ const .

(3.25)

The expectation, denoted by Q
(

θ, θold
)

, is maximized to revise the parameter
estimate θnew. This corresponds to the M step of EM algorithm, and can be written as:

θnew = arg max
θ

Q
(

θ, θold
)

. (3.26)

After updating the model parameter θnew, if the log likelihood or the parameter
values doesn’t converge, the estimated model parameter θnew is used as the θold to
calculate the expectation in equation 3.21. Several pairs of E and M steps are performed
until the convergence of the log likelihood or model parameters.
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Generally, event-based cameras are scarce and expensive to get, which increases the
difficulty to create event datasets. Besides, it is also strenuous to acquire the groudtruth
of the non-rigid deforming object. Therefore, we developed an accurate, efficient event
stream simulator, which generates synthetic event data from deforming objects. In
addition to the events, the developed simulator is able to provide RGB images, depth
images, ground-truth motion vectors, and surface normal images given a sequence of
pose parameters.

Figure 4.1.: Event Simulator Architecture. The modules are in gray, the inputs are in
red, and the outputs are in green boxes.

The structure of the event simulator is given in figure 4.1. The MANO model takes
the pose and shape parameters as input, and generates triangle hand mesh with
textures of given parameters. The render engine renders the textured mesh into depth,
motion field, and color images. The Adaptive sampler calculates the adaptive sampling
rate, which models the essential asynchronous property of the event-based camera.
The event generator takes consecutive intensity images and calculates synthetic events
according to the event generation model introduced in section 4.1.

Our simulator effectively samples event frames using adaptive sampling strategy
(Sec. 4.2). We showed the method to compute the motion field of the object (Sec 4.3),
which is required in the adaptive sampling rate calculation. To simulate more realistic
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data, we model noise in the event generation process (Sec. 4.4). We show all supported
data modalities of our event stream simulator in section 4.5.

Our event simulator extends Nevhi’s simulator [26] and ESIM [31]. Our simulator
supports more data modalities (Sec. 4.5), and increases efficiency by adaptive sampling
of event frames (Sec. 4.2) and parallel programming. We show the comparison with
Nehvi’s simulator and other event stream simulators in detail in section 4.6.

4.1. Event Generation Model

In contrast to traditional RGB cameras which record the absolute brightness of all pixels
on the image plane, event-based cameras capture relative per-pixel brightness change.
At a given pixel x, an event is triggered if the relative brightness change exceeds a
threshold called contrast sensitivity. Different pixels on the image plane are triggered
independently, which outputs an asynchronous stream of events, when

|L(x, t)−L(x, t− ∆t)| ≥ C, (4.1)

where L represents the brightness, x represents the pixel location, t represents the
current timestamp, and C represents the contrast sensitivity of the event-based camera.
It is well mentioning that the logarithmic irradiance value is used as the brightness
value to model the HDR (High Dynamic Range) ability of the real event-based camera.

An event is usually represented as e = (x, y, t, p), where x and y indicates the
pixel coordinates as 2D location on the image plane, t is the timestamp when event
occurs, and the discrete variable p ∈ {−1, 1} is the polarity which indicates whether
the brightness increases or decreases on the pixel. Usually, a set of events S =

{ei = (xi, yi, ti, pi)} within a time window T are accumulated into an event buffer
image as shown in the right column in figure 4.2.

In the developed simulator, the synthetic events are generated from two consecutive
images according to equation 4.1. For each pixel on the image, an event is generated
when the brightness change is larger than threshold C. This process is shown intuitively
in figure 4.2.
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Figure 4.2.: Event Generation Principle. The two intensity images with black back-
ground are rendered from the textured mesh. The events image with white
background are accumulated from all events in a temporal window between
the two rendered image. Positive events are represented in red, while the
negative events are represented in blue.

4.2. Adaptive Sampling

An essential advantage of event-based cameras is the continuous representation of the
visual signal at every pixel. Unlike the intensity images which have a fixed frame rate
and can be sampled synchronously, the events should have an asynchronous fashion.
Rebeq et al. [31] proposed the adaptive sampling method in ESIM, which allows the
simulator to sample frames adaptively. We take the adaptive sampling method in our
non-rigid event simulator, namely adapt the sampling rate based on the predicted
dynamics of the visual signal. It is worth mentioning that the predicted dynamics
refers to the motion field of each pixel, introduced in section 4.3. Two possible adaptive
sampling strategies are introduced in the section. As illustrated in figure 4.1, the
calculated sampling rate is used to ask the render engine to render a color image. The
events since the last color image are simulated using the event generation principle in
figure 4.2.

Nehvi’s simulator uses historical information to calculate the adaptive sampling rate,
which is inaccurate. In Nevhi’s simulator, the adaptive sampling rate is decided by the
maximal brightness difference between two recently sampled images. However, the
historical information does not describe the current motion accurately. In our simulator,
we simulate motion field (Sec. 4.3) which provides the information of current motion.
It leads to a more accurate adaptive sample rate.
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Figure 4.3.: Adaptive Sampling on a single pixel. Positive (red) and negative (blue)
events are generated whenever the brightness change larger than the con-
trast threshold C. The Event rate grows when the brightness change rapidly.
Image from [31].

Adaptive Sampling Based on Brightness Change

The idea of adaptive sampling based on brightness change is that the simulator renders
when the maximum expected brightness change of arbitrary pixel on the image plane
exceeds the contrast threshold C.

Under the Lambertian surfaces assumption, the brightness constancy assumption
[39] can be formulated as:

L(x, y, t) = L(x + δx, y + δy, t + δt) . (4.2)

The approximation of first-order Taylor expansion of equation 4.2 yields:

L(x + δx, y + δy, t + δt) ≈ L(x, y, t) +
∂L
∂x

δx +
∂L
∂y

δy +
∂L
∂t

δt. (4.3)

After some simple transformation, it can be rewritten as:

∂L
∂x

δx +
∂L
∂y

δy +
∂L
∂t

δt = 0,

∂L
∂x

u +
∂L
∂y

v +
∂L
∂t

= 0.
(4.4)

Thus, the original brightness constancy assumption can be represented as:

∂L (x; t)
∂t

≃ − ⟨∇L (x; t) ,V (x; t)⟩ , (4.5)
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where the brightness change rate can be represented by the negative dot product of the
image gradient ∇L and motion vector V at pixel x. The expected brightness change at
pixel x and time t can be approximated by

∆L (x; t) ≃ ∂L (x; t)
∂t

∆t, (4.6)

where the ∆t indicates the given small interval of time. Equation 4.5 and 4.6 formu-
late the linearlized event generation model [8], which can approximate the expected
brightness change during a small time interval from the motion field and the image
gradient.

The adaptive next sampling time can be calculated by

tk+1 = tk + λbC
∣∣∣∣∂L∂t

∣∣∣∣−1

m
, (4.7)

where
∣∣∣ ∂L

∂t

∣∣∣
m
= maxx∈Ω

∣∣∣ ∂L(x;tk)
∂t

∣∣∣ indicates the maximum brightness change rate across
image plane Ω. λb ≤ 1 is a parameter that manually controls the trade-off between the
rendering accuracy and efficiency. In our project, we adjust the λb by observing the
simulated and real event data and close the gap between them.

Adaptive Sampling Based on Pixel Displacement

The idea of adaptive sampling based on pixel displacement is to ensure that the
maximum displacement of any pixel on the image plane between consecutive rendered
frames is bounded:

tk+1 = tk + λv |V|−1
m , (4.8)

where |V|m = maxx∈Ω |V (x; tk)| is the maximum altitude of the motion vector across
the image plane at time tk. As before, λv ≤ 1 is used to manually control the render
rate and is adjusted using real events data.
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4.3. Motion Field

In computer vision, the motion field is an ideal representation of 3D motion as it is
projected onto a 2D camera image. Optical flow represents the apparent motion of
brightness patterns on a 2D image. Generally, Optical flow is an approximation of the
motion field. The difference is small at points with high spatial gradients under some
simplifying assumptions. In this project, we estimate the motion field and use it to
approximate the optical flow.

Figure 4.4.: A visualization of motion field in hand deformation sequence. Green
arrows denotes where 3D points move.

Theoretically, the discrete motion field can be calculated by(
u′

v′

)
=

π
(
(x2, y2, z2)T)− π

(
(x1, y1, z1)

T)
∆t

, (4.9)

where (u′, v′)T is the motion field in image coordinate, π is the projection function
related to the camera model, and ∆t denotes a small time interval. Spatial points
(x1, y1, z1)

T and (x2, y2, z2)T are the same point on the object before and after deforma-
tion in the small time interval, respectively.

Pratically, we can simplify the process because of the known pixel-to-face coordinates
and barycentric coordinates from rasterization. The motion field of a pixel can be
explained as where the corresponding 3D point of the pixel moves. According to pixel-
to-face coordinate, we know the face index of the mesh model, which corresponds to
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the pixel. Doing barycentric interpolation using vertex locations before the deformation,
we can know the exact 3D point position which projects to the pixel. Obviously, we
can use vertex locations of the same face after the deformation to do the barycentric
interpolation. It can give us the updated 3D position of the point which projects to that
pixel. Then, we can project the interpolated 3D point back to the image plane, and we
get the reprojected position of that pixel. The reprojection process of a pixel is given
intuitively in figure 4.5.

Figure 4.5.: Reprojection of a pixel during the deformation.
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4.4. Noise Modelling

Event-based cameras are noisy because of the inherent shot noise in photons and from
transistor circuit noise [12]. To close the sim-to-real gap of our simulator, we have noisy
modelling methods that the uncertainty and background noise of real event-based
cameras.

Uncertainty of Contrast Threshold

The contrast threshold C of a real event-based camera is determined by the pixel bias
currents [12]. Positive and negative events can be triggered according to different
corresponding thresholds, namely C+ and C−. In practice, the contrast threshold
C is affected by the noise and the pixel-to-pixel mismatch. Similar to ESIM [31],
we model the uncertainty of the contrast threshold by sampling it from a Gaussian
distribution at each sampling time. In our simulator, we draw the contrast threshold
from N (0.5, 0.0004).

Salt-and-Pepper Noise

In our observation, the real event-based camera outputs a considerable amount of noisy
events on the background, which are not generated by a moving edge. To make the
synthetic event data more realistic, we also simulate the salt-and-pepper noise in our
simulator. Here, we use a similar method as in EventHands [35]: at each sampling
time, we sample a probability from a uniform distribution from [0, 1] for each pixel; If
the probability exceeds a predefined threshold, a salt-and-pepper noise event appears
on this pixel. Rudnev et al. [35] estimated the noise event rate by placing the event-
based camera towards the static background and counting the number of positive and
negative recorded events. They reported that the noise consists of ≈ 2500 positive
and ≈ 100 negative events per second. Thus, the threshold is adjusted to 1× 10−5 for
positive noisy events and 4× 10−7 in our simulator.
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4.5. Data Simulation

In this section, we visualize available data modalities of our event simulator, e.g. RGB
image, depth image, event stream, motion vector, and surface normal. The color coding
of the 2D flow vectors and 3D normal vectors are shown in the lower right corner in
figures 4.6e and 4.6f, respectively.

(a) RGB intensity image (b) Colorful depth image

(c) Image of events in a spatio-temporal win-
dow

(d) Image of accumulated events between con-
secutive intensity images

(e) Motion field (f) Surface normal

Figure 4.6.: Synthetic data of our event simulator. Here is an example sequence of the
MANO hand motion.
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4.6. Comparison of event simulators

We compare our simulator with state-of-the-art rigid motion [31] and non-rigid motion
[26, 35] event stream simulators.

ESIM

Rebeq et al. [31] proposed ESIM, which is a popular open-sourced event camera simula-
tor for simulating events from camera ego-motion or object rigid-body transformation.
ESIM uses OpenGL as the rendering engine, and is mainly implemented in C++. The
architecture of ESIM can be found in figure 4.7.

For the camera ego-motion, ESIM takes the scenario data and a user-defined camera
trajectory as input, returns simulated asynchronous events stream, RGB images, depth
images, motion field, and IMU data. For multiple object tracking, ESIM takes the
scenario, object data, and user-defined trajectories for all objects as input, returns
similar outputs as the camera ego-motion simulation without the IMU data.

Figure 4.7.: Architecture of ESIM [31]. ESIM samples the camera pose TWC (tk) and the
camera twist ξ (tk) from the given trajectory, and the renderer returns a
intensity image and a motion vector map. The next rendering time tk is
adaptively chosen as described in section 4.2. Image from [31].

ESIM is popular in event-based VIO (Visual-Inertial-Odometry) tasks, since it has
perfect simulated IMU data, RGB image, and events stream. ESIM also supports in
publishing data as ROS (Robot Operating System) topics, which is also an essential
advantage for robotic vision development.
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The main drawback of ESIM is that it doesn’t support non-rigid objects. Compared to
ESIM, our non-rigid event simulator support deforming objects. Besides, our simulator
is mainly implemented in Python, which no longer requires us to calculate the gradient
manually thanks to the automatic differentiation engine in PyTorch.

Differentiable Event Simulator

Nehvi et al. [26] proposed a differentiable event simulator, which simulates intensity
images and events of the motion of MANO [34] hand pose. Thanks to the technology
of differentiable rendering introduced in section 3.2, each pixel on the image screen is
differentiable with respect to hand pose parameters. Literally, the differentiable event
simulator proposed by Nehvi has the similar structure as our simulation framework in
figure 4.1. However, there are several limitations of the Nehvi’s simulator compared to
our simulator.

First of all, Nehvi’s simulator has less data modality: it can only output asynchronous
events. As an reference, our simulator outputs intensity RGB image, asynchronous
events, depth image, surface normal and discrete motion field. We believe the mo-
tion field is an essential output of an event simulator, since event-based optical flow
estimation is a popular task in event-based computer vision [14] [43].

Secondly, because of the lack of the motion field information, Nehvi’s method has
a bad adaptive sampling strategy. The sampling time is inverse proportional to the
maximal brightness difference between the last two rendered images among all pixels,
which is based on the historical motion and cannot react to the next motion. As a
reference, our simulator uses the adaptive sampling strategy introduced in section 4.2,
which is based on a linearlized event generation model and optical flow. Thanks to
the motion field, the simulator can select the sampling time according to the current
motion of objects.

Last but not least, the event generation process is not parallel processed. The Nevhi’s
simulator loops over each pixel and calculates the brightness change, which is extremely
inefficient and limits the simulation of large image sizes. As a reference, our simulator
processes event generation on each pixel simultaneously using parallel programming
introduced in section 3.4.2.

In the simulation, different speed of simulated motion leads to different sampling
times because of the adaptive sampling strategy (Sec. 4.2). It takes 47.17 seconds
to simulate a one-second synthetic sequence, which contains 30 RGB images, depth
images, surface normal images, motion field images, and 220 sampled event frames
(Sec. 4.5). As a comparison, the Nehvi’s simulator [26], which doesn’t use parallel
processing operation, takes 3717.56 seconds to simulate a pure events stream of the
same sequence. Our simulator is 78-times faster than Nevhi’s simulator, which is an
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enormous advantage while generating enormous data.

EventHands

Rudnev et al. [35] proposed an event simulator for MANO hand in EventHands. Rud-
nev’s simulator is mainly implemented in C++, which is faster than the implementation
in Python due to compilation mechanism. The event generation process is implemented
in CUDA, which means all pixels are parallely processed.

However, same as Nevhi’s simulator [26], Rudnev’s simulator also only has events
stream as output. Moreover, because of the lack of motion field, it doesn’t have the
adaptive sampling strategy. It samples every 0.001 seconds, which is inefficient when
the motion is small. Nevertheless, Rudnev’s simulator is not implemented in PyTorch.
Therefore, it is not differentiable with respect to inputs same as ESIM [31].

Summary

This section compares our simulator with other event simulators in different metrics.
Table 4.1 represents the differences between event simulators intuitively. In summary,
our simulator supports non-rigid objects, parallel processing in the event generation
process, and automatic differentiation, which are advantages over the well-known event
simulator, ESIM [31]. In addition to that, our simulator has up to 5 data modalities,
and supports adaptive sampling using simulated motion field. These features are not
achieved by non-rigid event simulators in [26] [35]. Last but not least, our simulator
integrates SMPL-X model [29], which is the only events simulator that simulate events
generated by the motion the of body and facial expression.

Non-Rigid
Objects

Data
Modality

Adaptive
Sampling

Parallel
Processing

Auto
Gradient

Our
Simulator

Body, Hand,
Expression

5
√ √ √

ESIM [31] × 5
√

× ×

Nehvi’s
Simulator [26]

Hand 1 × ×
√

EventHands [35]
Hand 1 ×

√
×

Table 4.1.: Comparison between our event simulator and other event simulators in
different metrics.
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This chapter explains our proposed methods and frameworks in the non-rigid object
tracking task. We propose that events can be distinguished as contour events and
texture events (Sec. 5.1). Then, we propose an expectation maximization contour
tracking approach for contour events (Sec. 5.3) and a contrast maximization texture
tracking approach for texture events (Sec. 5.4). We explain the advantage and the
limitation of each approach in their sections. Then, we introduce an event-based non-
rigid tracking framework in 5.5, which combines advantages and addresses issues of
CM-texture-tracker and EM-contour-tracker. At the end of this chapter, we introduce
the sliding window optimization applied in our tracking framework.

5.1. Contour and Texture Events

In our project, we first proposed that events can be classified into contour events and
texture events. Contour event means the event is generated by the motion of contour
boundary of objects and texture event means the event are generated by the motion of
texture at each pixel.

Figure 5.1 intuitively shows that our decision strategy of a mesh face as contour
face or texture face for an event can be obtained from the relationship between the
unprojection ray through the event and the normal of the mesh face: if they are
orthogonal to each other, the mesh face is a contour face w.r.t. the event; if they are
parallel to each other, the mesh face is a texture face w.r.t. the event.

Thus, we compute the dot product between the normal of mesh face f j and the
unprojection ray of event ei, and formulate the contour probability of the mesh face f j
w.r.t. event ei from the absolute dot product using the exponential function as

Pcontour = exp(−
|N( f j) · b(ei)|

γ
), (5.1)

where N(·) denotes the normal of mesh face f j while b(·) represents the bearing vector
of event ei. γ is the sharpness control parameter.

In our project, we define a hard decision boundary for the contour probability: if
the calculated probability is higher than the threshold, we treat event ei as that it is
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(a) Unprojection ray is orthogonal to the nor-
mal of mesh face.

(b) Unprojection ray is parallel to the normal
of mesh face.

Figure 5.1.: The normal of contour face f j is orthogonal (a) to the unprojection ray of
event ei, while the normal of texture face f j is parallel (b) to the unprojection
ray of events ei. Cyan arrows are the normal of vertices.

caused by contour mesh face f j; Otherwise, it is considered as that it is caused by
texture face f j. According to this, we can split events {ek, ek+1, ..., ek+N−1} into contour
events group {Econtour} and texture events group {Etexture}. Then, we perform the
tracking framework using contrast maximization principle (Sec. 3.6) on texture events
group {Etexture}, and perform the tracking framework using expectation maximization
algorithm (5.3) on contour events group {Econtour}.

We show an intuitive visualization of the distinguished contour mesh faces (Fig. 5.2a)
and texture mesh faces (Fig. 5.2b) of a mesh model using proposed contour probability
(Eq. 5.1). In this example, we assume the event ei is at the image center. We calculate
the dot product between the bearing vector of event ei and normals of all mesh faces.
Then, we formulate the contour probability from the dot product using Equation 5.1. If
the contour probability of a mesh face is larger than the predefined hard boundary, the
mesh face is a contour mesh face w.r.t. event ei.
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(a) Contour mesh faces. (b) Texture mesh faces.

Figure 5.2.: Visualized Contour mesh faces and Texture mesh faces.

Figure above shows intuitively that our method can distinguish contour mesh faces
and texture mesh faces. Theoretically, an event caused by a contour mesh face is a
contour event and an event caused by a texture mesh face is a texture event. We pro-
posed expectation-maximization contour events tracking approach (Sec. 5.3) for contour
events and perform contrast-maximizaton-based texture events tracking approach (Sec.
5.4) for texture events.

5.2. General Detail in Tracking Framework

Spatio-temporal windows of events:

we split the stream of asynchronous events into a set of spatio-temporal windows as in
figure 5.3 to increase the computational efficiency. We assume that the time difference
of the window is so small that all events in the window can be considered as having
one mesh pose. Thus, we estimate the mesh pose for an event buffer instead of for a
single event, which reduces computational complexity. The kth window is defined as
the set of events Wk = {ek, . . . , ek+N−1}, where N is the window size parameter. It is
worth mentioning that the number of events is fixed in each window, which means
the start time t f

k := tk and duration of each window ∆t f
k are controlled by the events.

This preserves the data-driven nature of the sensor. Obviously, the selection of window
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size N is a trade-off: for the same events stream, a larger N means a lower number of
windows and estimation of fewer parameters. A smaller N means more windows, but
also less events will be considered as having the same mesh pose. In summary, larger
N means lower computation time, smaller N means higher accuracy.

Figure 5.3.: Spatio-temporal windows of events. Events are depicted as blue dots on
the timeline. The windows {Wk} are marked in red (N = 4 here). Note that
the temporal size of each window ∆t f

k is automatically adapted to the event
rate.

Initialization of desired mesh pose:

For the initial frame, we start from a known mesh pose. Regarding subsequent event
frames, we use the estimation result of the last spatio-temporal window θk−1 and
the previous mesh pose velocity vk−1 to initialize the estimated mesh pose of current
spatio-temporal window θk. The pose velocity vk−1 and the initialization of θk can be
formulated as

vk−1 =
θk−1 − θk−2

∆tk−1
(5.2)

θk = θk−1 + vk−1 · ∆tk (5.3)

5.3. Expectation Maximization for Contour Tracking

In this section, we propose an event-based non-rigid tracking method using the ex-
pectation maximization framework which process contour events. The main idea is to
maximize the expectation of the measurement likelihood of the association between
contour events and contour mesh faces of objects. Note that event ei in this part denotes
contour event.

We obtain the association relationship between the events and mesh faces using the
rasterization of objects. The rasterization process introduced in section 3.2.1 provides
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the association between events and mesh faces. However, if an event is outside of the
2D contour of the mesh model, no corresponding mesh face is available. Inspired by
soft rasterizer [24], we can assign events to mesh faces in a soft manner, where each face
has its probability to cause the event. In other words, an event ei in the spatio-temporal
window Wk (Sec. 5.2) can be caused by any mesh face f j of the model. Thus, we
formulate the measurement likelihood P(ei| f j, θk), which means the likelihood that the
event ei is caused by mesh face f j under the current mesh pose θk. We construct a
probability map D with the size of [N, F] for all events in the spatio-temporal window
Wk, where N is the number of events in the window and F is the number of triangle
faces of the mesh model. The computation of the measurement likelihood P(ei| f j, θk)

can be described in following detailed steps:

1. We unproject from the 2D event location ei = (x, y) to compute the 3D bearing
vector bi = (mx, my, mz) using the pinhole camera model:

 mx

my

mz

 =


x−cx

fx
y−cy

fy(
1 + m2

x + m2
y

)− 1
2

 , (5.4)

where ( fx, fy) is the focal length and (cx, cy) is the image principle point. After
multiplying two arbitrary depths value with bearing vector bi, we obtain two 3D
points, PA and PB, lying on the unprojection ray through the event ei.

2. We calculate the lateral distance from the unprojection ray to each individual
mesh face. Intuitively, the closer the mesh face to the unprojection ray, the higher
the probability that the mesh face causes the corresponding event. We have the
following method to calculate the lateral distance:

• Line-Edge-distance: minimal distance between the unprojection ray and
edges of the mesh face. An event can be caused by an arbitrary point on the
mesh face. Therefore, we introduce the method (Fig. 5.4) which calculates
the distance between the unprojection ray and the closest edge of the mesh
face. Here, we use the formula in section 3.5.2: the line of unprojection ray
is defined by points pA and pB, while three edges of the mesh face are line
segments defined by vertices (x1j, y1j, z1j)

T, (x2j, y2j, z2j)
T, and (x3j, y3j, z3j)

T

(in cyan in Fig. 5.4). Afterwards, the minimal distance of three edges is used
as the lateral distance.
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Figure 5.4.: Line-Edge lateral distance between the unprojection ray of event ei and
mesh face f j.

The lateral probability from the distance between the event unprojection ray
and the edge has two cases: If the unprojection ray doesn’t goes through
the mesh face, the smaller the lateral distance, the higher the association
probability; If the unprojection ray go through the mesh face, the larger the
lateral distance, the further the unprojection ray from the boundary of the
mesh face, and therefore the higher the association probability. Inspired by
SoftRasterizer [24], we use a sigmoid function to model the lateral probability
from the line-edge-distance:

Plateral ∝ sigmoid(δi
j ·

f (dlateral(i, j))
α

), (5.5)

where the α is the sharpness control parameter. f (·) is the Charbonnier
robust kernel function [3], which is more robust compared to L2-norm. δi

j

is a sign indicator that δi
j = +1 if the unprojection ray of event ei intersects

with mesh face f j and δi
j = −1 if they don’t intersect. Here, we use the

formula introduced in section 3.5.3 to determine whether the unprojection
ray defined by points PA and PB intersects with a 3D triangle face spanned
by (x1j, y1j, z1j)

T, (x2j, y2j, z2j)
T, and (x3j, y3j, z3j)

T.

3. In addition to the lateral distance, we also have to consider the longitudinal
distance from the mesh face to the image plane. Normally, the unprojection ray
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will go through two mesh faces on the front and the back side of the model.
Taking the longitudinal distance into consideration helps us to avoid assigning
the event to the mesh face, which has a small lateral distance but is far away from
the image plane. We also have the following method to calculate the longitudinal
distance:

• Length along the unprojection ray: We consider the projected mesh face
distance on the event projection ray as the longitudinal distance. We construct
a right triangle connecting the image center, the mean face location, and the
closest point to the mean face location on the unprojection ray. We use mean
vertices location (xj, yj, zj)

T (in cyan in Fig 5.4) to indicate the location of face
f j. PA and PB are two arbitrary 3D points on the unprojection ray, and they
determine a 3D line along the unprojection ray through the event ei. Here,

we use the formula introduced in section 3.5.1 to calculate the distance d
f j
ei

between the unprojection ray of event ei and the mean location of the mesh
face f j. According to the Pythagorean theorem [16], the distance from the
image center to the closest point on the unprojection ray can be formulated
as

dlongitudinal =

(xj, yj, zj)

 xj
yj
zj

− d
f j
ei ∗ d

f j
ei


1
2

. (5.6)

In the data association step, if several mesh faces have the similar lateral distance
w.r.t. an event unprojection ray, the mesh face with smaller longitudinal distance
should have higher likelihood to be associated with the event. Thus, we model
this effect by the longitudinal probability formulated as

Plongitudinal ∝ e(−
dlongitudinal (i,j)

β ), (5.7)

where β is the sharpness control parameter.

4. The contour probability Pcontour is formulated using the dot product between the
unprojection ray and mesh face normals as explained in Equation 5.1.

5. Given the individual probability term Plateral , Plongitudinal , Pcontour, we can formulate
the data measurement likelihood. It is worth mentioning that the data likelihood
term should be formalized differently for the expectation step and in the maxi-
mization step. In the expectation step, we consider longitudinal term Plongitudinal
because the closer mesh face has higher probability to cause the event. Besides,
we consider lateral term Plateral and contour term Pcontour as well. It means the
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mesh face which is closer and more orthogonal w.r.t. the event unprojection ray
have higher probability to be associated with the event. Thus, the data likelihood
for the expectation step is formulated as

P
(
ei| f j, θk

)
∝ Plateral · Plongitudinal · Pcontour. (5.8)

However, the longitudinal term Plongitudinal should be dropped in the maximization
step, since the object pose should not be optimized to have smaller longitudinal
distance. The lateral term Plateral and the contour term Pcontour formulates the data
likelihood for the maximization step:

P
(
ei| f j, θk

)
∝ Plateral · Plongitudinal . (5.9)

Now we have association data likelihood P(ei| f j, θk) between events and all mesh
faces under current mesh pose. Now, the hard association correspondence using raster-
ization can be replaced by soft association process. Then, we propose an expectation
maximization framework, which uses the association between events and mesh faces as
the hidden variable.

The background of the expectation maximization algorithm is explained in section 3.7.
As stated in equation 3.20, the analytical formulation of likelihood P(X|θ) is difficult
since there is no observable relation between measurement X and model θ available.
Therefore, people introduce hidden variable Z to rewrite the original likelihood into
following marginal likelihood:

P(X | θ) = ∑
Z

P(X, Z | θ). (5.10)

We use the associations as the hidden variables, which is a novelty in our tracking
framework. In our project, measurements X are all events {ek, ..., ek+N−1} in a spatio-
temporal window Wk. The desired model θ means the mesh model defined by the pose
parameter θk. The posterior distribution of the hidden variable P(Z|X, θ) in our project
is the posterior distribution of the associations given events and mesh pose.

The original expectation of the complete-data log likelihood is stated in equation
3.21. We replace the hidden variable Z and measurement X with variable a and e,
respectively. a indicates the probability that mesh faces associates to event e. Then, we
get the expectation of the logarithmic likelihood (LL) in our tracking framework using
expectation maximization algorithm:

E(LL( f (θi) | e, a)) = ∑
aj∈ f aces

P
(

aj | e, f (θold)
)
· ln P

(
e, aj | f (θ)

)
, (5.11)
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where f (·) indicates a pipeline like MANO which takes pose parameters and outputs
a mesh model. Obviously, the hidden variable aj is marginalized with ∑aj∈ f . It can be
explained that for a single event e, summing up the association probability of all mesh
faces is equivalent to the marginalization of the association variable. P(aj|e, f (θold))

is the hidden state distribution. It is worth mentioning that in the expectation step,
we always use the fixed previous model parameter θold to compute the hidden state
distribution. In other words, we estimate how the hidden variables distribute according
to our previous knowledge of the model θ. ln P(e, aj| f (θi)) is the logarithmic likelihood
term. We compute the logarithmic likelihood based on all states of the hidden variable,
and calculate the expectation of the log-likelihood according to the individual states
distribution of the hidden variable.

The hidden variable distribution P(aj|e, f (θ)) can be calculated from measurement
likelihood P(e|aj, f (θ)) based on Bayes’ theorem [10]:

P
(
aj | e, f (θ)

)
=

P
(
aj, e | f (θ)

)
P(e | f (θ))

=
P
(
e | aj, f (θ)

)
· P
(
aj | f (θ)

)
P(e | f (θ))

=
P
(
e | aj, f (θ)

)
· P
(
aj | f (θ)

)
∑aj P

(
aj, e | f (θ)

)
=

P
(
e | aj, f (θ)

)
· P
(
aj | f (θ)

)
∑aj P

(
e | aj, f (θ)

)
· P
(
aj | f (θ)

) ,

(5.12)

we assume that the association variable aj is unconditioned on mesh f (θ) without
the measurement variable e. Therefore, we assume that probability P(aj| f (θ)) has a
uniform distribution. Thus, equation 5.12 turns into

P
(
aj | e, f (θ)

)
=

P
(
ei | aj, f (θ)

)
∑aj P

(
e | aj, f (θ)

) , (5.13)

where we can represent hidden variable distribution P
(
aj|e, f (θ)

)
purely with the

available measurement likelihood P(e|aj, f (θ)).
Similarly, logarithmic likelihood term P(e, aj| f (θ)) can also be calculated from mea-

surement likelihood term P(e|aj, f (θ)) as

ln P
(
e, aj | f (θ)

)
= ln

(
P
(
e | aj, f (θ)

)
· P
(
aj | f (θ)

))
= ln

(
P
(
e | aj, f (θ)

))
,

(5.14)

where P(aj| f (θ)) is assumed to be a uniform distribution and neglected.
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Now, we can represent the expectation of the logarithmic likelihood in equation 5.11
purely with the available measurement likelihood P(e|aj, f (θ)):

E(LL( f (θi) | e, a)) = ∑
aj∈ f aces

P
(
e | aj, f (θi−1)

)
∑aj P

(
e | aj, f (θi−1)

) · ln (P (e | aj, f (θi)
))

, (5.15)

where θi−1 is the estimation of mesh pose in the last iteration, which is fixed and
will not be optimized in current iteration. Equation 5.15 is the objective function in
our tracking framework using expectation maximization algorithm. In summary, we
maximize the likelihood that an event e is caused by an arbitrary mesh face to optimize
over current mesh pose θi.

We now have the objective function for an event ei. Our EM-based tracking framework
allows non-rigid tracking using single event input. As introduced in section 2.1, events
are usually timestamped with microsecond resolution. In principle, our EM-based
tracking framework has the potential to estimate the mesh pose with microsecond
temporal resolution as well. It fully benefits from the advantage in high temporal
resolution of event cameras which is not achieved by other event-based non-rigid
tracking frameworks in [35], in [26], and in section 5.4.

To increase the computational efficiency, we assume that N events {ek, ..., ek + N −
1} in spatio-temporal window Wk are caused by the same mesh with pose θk. A
visualization of events in spatio-temporal window can be found in figure 5.3. The
expectation of logarithmic likelihood for multiple events can be formulated as

∑
ak

∑
ak+1

· · · ∑
ak+N−1

(P (ak, ak+1, · · · , ak+N−1 | ek, zk+1, · · · , zk+N−1, f (θk)) ·

ln P (zk, zk+1, · · · , zk+N−1, ak, ak+1, · · · , ak+N−1 | f (θk))),
(5.16)

where ai is the association situation of event ei. To be more intuitive on the dependency
between variables, we generate a Bayesian network to interpret the relationship between
events {ek, ..., ek+N−1}, association situation for each event {ak, ..., ak+N−1}, and desired
mesh pose θk:

We assume that events are independent from each other. We can apply the chain rule
[36] on equation 5.16 and rewrite it into
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5. Event-based Non-Rigid Tracking

Figure 5.5.: Bayesian network with variables {ek, ..., ek+N−1}, {ak, ..., ak+N−1}, and θk. It
is intuitively shown that each event ei is only dependent on it parents: the
association situation ai and the mesh pose parameter θk.

∑
ak

· · · ∑
ak+N−1

(P (ak, ak+1, · · · , ak+N−1 | ek, zk+1, · · · , zk+N−1, f (θk)) ·

ln P (zk, · · · , zk+N−1, ak, · · · , ak+N−1 | f (θk)))

=∑
ak

· · · ∑
ak+N−1

(P (ak | ek, · · · ek+N−1, f (θk)) · · · P (ak+N−1 | ek, · · · ek+N−1 · f (θk)) ·

ln ((P(ek|ak, f (θk)) · · · P (ek+N−1 | ak+N−1, f (θk)))

=∑
ak

· · · ∑
ak+N−1

(P (ak | ek, f (θk)) · · · P (ak+N−1 | ek+N−1, f (θk)) ·

ln (P (ek | ak, f (θk)) · · · P (ek+N−1 | ak+N−1, f (θk))))

(ln (P (ek | ak, f (θk))) + · · ·+ ln (P (ek+N−1 | ak+N−1, f (θk)))))

=∑
ak

· · · ∑
ak+N−1

(P (ak | ek, f (θk)) · · · P (ak+N−1 | ek+N−1, f (θk))︸ ︷︷ ︸
sums up to 1

· ln (P (ek | ak, f (θk))))

+∑
ak

· · · ∑
ak+N−1

· · ·

+∑
ak

· · · ∑
ak+N−1

(P (ak | ek, f (θk)) · · ·︸ ︷︷ ︸
sums up to 1

P (ak+N−1 | ek+N−1, f (θk)) · ln (P (ek+N−1 | ak+N−1, f (θk))))

=∑
ak

(P (ak | ek, f (θk)) · ln (P (ek | ak, f (θk))))︸ ︷︷ ︸
expectation of log-likelihood for ek

+ · · ·
+ ∑

ak+N−1

(P (ak+N−1 | ek+N−1, f (θk)) · ln (P (ek+N−1 | ak+N−1, f (θk))))︸ ︷︷ ︸
expectation of log-likelihood for ek+N−1

=E(LL( f (θk) | ek, ak)) + · · ·+ E(LL( f (θk) | ek+N−1, ak+N−1)).
(5.17)
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It proves that maximizing the expectation of logarithmic association likelihood of
multiple events caused by same pose θk is equivalent to maximizing the sum of the
expectation of all events in the spatio-temporal window Wk.

Finally, given the events input ei, we maximize the above stated objective function to
optimize for pose parameter θk:

argmax
θk

(E(LL( f (θk) | ek, ak)) + · · ·+ E(LL( f (θk) | ek+N−1, ak+N−1))) (5.18)

We provide a brief summary of the EM-based non-rigid tracking framework in
algorithm 1. After the initialization process of θk, the tracking framework can be
divided into two steps:

1. E-step: For each event in spatio-temporal window Wk, we calculate the lateral
distance, the longitudinal distance, and the dot product from the event to each
face of the mesh model. Then, we compute the measurement likelihood that the
event is caused by the individual mesh face based on the distance. According
to equation 5.15, we can calculate the hidden variable distribution and the log-
arithmic likelihood from the measurement likelihood. Finally, we compute the
expectation of the log-likelihood. As proven in equation 5.17, we sum the ELL for
all events up. It is the value of the Q-function as stated in equation 3.21.

2. M-step: we maximize the value of Q-function to solve for the desired mesh pose
parameter θk.

The expectation maximization algorithm is an iterative algorithm. It iterates over E-
step and M-step until Q-function converges. We show the algorithm of the expectation
maximization contour tracking approach in Alg. 1.

As indicated in equation 5.11, hidden variable distribution P(a|ei, θold) uses the
previous estimation on mesh pose parameter θold. In other words, this term doesn’t
propagate the gradient from the pose parameter θ, which needs to be solved. We
visualize the gradient map in our EM-based non-rigid tracking framework in figure 5.6.
It shows that the gradient flow is not propagated through hidden variable distribution
P(a|ei, θk).

Theoretically, our proposed EM-contour-tracker is limited to process contour events.
A texture event already has an intersection with a mesh face, which means it already
has a high expectation of the data likelihood given the association. Thus, our EM-
contour-tracker cannot perform tracking based on texture events.
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Algorithm 1 EM-contour-tracking using event-based cameras
Input: events {ek, · · · , ek+N−1} in spatio-temporal window Wk
Output: optimized mesh pose parameter θk

1: procedure ExpectationMaximization

2: θk ← initialization of mesh pose, (Eq.5.2, 5.3)
3: E-step:
4: f (θk)← generate mesh model given pose parameter θk, (Sec.3.1)
5: obj_ f unc← 0, initialization of objective function
6: for ei in {ek, · · · , ek+N−1} do
7: di

normal ∈ [F]← dot product between event ei to F faces, (Eq.5.1)
8: di

lateral ∈ [F]← lateral distance from event ei to F faces, (Fig.5.4)
9: di

longitudinal ∈ [F]← longitudinal distance from event ei to F faces, (Eq.5.6)
10: P(ei|a, f (θ)) ∈ [F]← Likelihood of event ei caused by F faces, (Eq.5.8, 5.9)
11: E(LL( f (θk|ei, a)))← expectaion of log-likelihood of event ei, (Eq.5.15)
12: obj_ f unc← obj_ f unc + E(LL( f (θk|ei, a))), (Eq.5.17)

13: M-step:
14: θk ← argmax

θk

obj_ f unc

15: if Optimization doesn’t converge then
16: goto E-step.
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Figure 5.6.: Gradient flow map in EM-based tracking framework. Variables in green
means they contain gradient flow. Variables in black means they don’t
contain gradient flow. In other words, gradient is not propagated through
those variables.

5.4. Contrast Maximization for Texture Events

For texture events, we propose CM-texture-tracker which uses the contrast maximiza-
tion principle introduced in section 3.6. As stated in [14], events triggered by the same
moving edge lie on a point trajectory, which is defined by estimated motion parameters.
Events on a point trajectory are warped back to the same location on a reference frame,
when motion parameters define the point trajectory accurately. Thus, we can maximize
the sharpness of the IWE (Image of Warped Events) to optimize over desired motion
parameters.

The point trajectory in our non-rigid tracking task can be understood as the trajectory
of the mesh face which causes those events. A point trajectory for a set of corresponding
events is visualized intuitively in figure 5.7. At time t, t + 1, and t + 2, three events
(indicated with green dots) are caused by 3D points on the same mesh face i, respectively.
The positions of 3D points are determined by barycentric coordinates and the location of
three corresponding vertices. Barycentric coordinates are obtained in the rasterization
process. A line connecting these 3D points is the point trajectory for the set of events in
figure 5.7.

Estimated motion parameters in our project are the non-rigid mesh deformation.
The mesh deformation contains the spatial information of vertices for all mesh faces.
Assuming the mesh deformation is correctly estimated, each event can find the correct
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Figure 5.7.: Visualization of point trajectory. Green dots at frame t, t + 1, and t + 2 are
corresponding events which caused by same mesh face i. Trajectory of 3D
points which cause a set of corresponding events is the point trajectory of
the events.

corresponding mesh face. After knowing the index of the corresponding mesh face,
we can project the mesh face using mesh information in the reference frame. Thus, we
warp the original event back to the reference frame. In principle, the corresponding
events caused by the same mesh face will be warped back to the same position. After
warping all events in a tiny spatio-temporal window, we obtain an IWE. It should have
the highest sharpness if mesh information is correctly estimated and all events find
their corresponding mesh faces.

The tracking method using the contrast maximization algorithm can be described in
the following detailed steps:

1. Find corresponding mesh faces for all events: for all events in the spatio-temporal
window (Sec. 5.2), we have to find the corresponding mesh face. As introduced in
section 3.2.1, the rasterization process provides the pixel-to-face correspondence
and the corresponding barycentric coordinate. In this step, we rasterize the
mesh which is generated using the desired mesh pose θk. Thus, we can get the
corresponding mesh face index and the barycentric coordinate for each event
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in the spatio-temporal window. After doing the barycentric interpolation, we
can find the corresponding 3D points of each event. These 3D points can be
considered as the 3D events. In other words, we lift the 2D events to 3D events in
this step.

2. Find corresponding mesh faces at reference frame: the core challenge in the
contrast maximization principle is to warp all the events into the reference frame.
In our project, we have to find the warped event position at reference frame. We
choose the previous spatio-temporal window as the reference frame, which has
the mesh pose θk−1. Then, we use the mesh vertex locations for the mesh face
at the reference frame to do the barycentric interpolation. Thus, we find the
corresponding 3D point at the reference frame for the event. It could also be
described as the 3D event at the reference frame.

3. Project mesh faces onto image plane: after knowing the location of the corre-
sponding mesh faces or 3D events at the reference frame, we can project them
back to the 2D image plane to obtain the 2D warped events position. The warping
process of 2D events is also called reprojection. A visualization of the reprojec-
tion process can be found in figure 4.5. Essentially, events in S spatio-temporal
windows are reprojected to the reference frame to generate the IWE. In our
project, we use the method described in the first step to initialize the mesh pose
{θk, ..., θk+S−1}. Then, we repeat the reprojection process with individual mesh
poses. The final IWE contains the warped events in spatio-temporal window Wk
to Wk+S−1.

4. Perform contrast maximization on IWE: the corresponding events caused by
the same mesh face should be warped back to the same position. We maximize
the sharpness of the generated IWE to optimize over mesh poses {θk, ..., θk+S−1}.
As introduced in the last step, we use individual mesh poses to warp events in
different spatio-temporal window to the reference frame. Thus, the IWE contains
the gradient w.r.t. all mesh poses. We can perform gradient-based optimization
to solve for mesh poses. There are several reward functions mentioned in section
2.2.1 to measure the sharpness of IWE. In our project, we use the variance

rσ2(H) =
1

Np
∑
i,j

(
hi,j − µH

)2 (5.19)

and SoSA (Sum of Suppressed Accumulations) [38]

rSoSA(H) = ∑
i,j

e(−hi,j∗p) (5.20)
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as the reward function, where hi,j is the number of reprojected events on pixel at
i-th row and j-th column on the IWE.

An intuitive visualization of all steps is available in figure 5.10. The reprojection
process (step 1 to 3) is similar to the motion field generation in our simulator, which is
visualized in figure 4.5.

Similar to our EM-contour-tracker, the proposed CM-texture-tracker also has limita-
tions:

1. Event correspondences can be wrongly processed in the contrast maximization
because of self-occlusion and non-rigid deformation. The contrast maximization
framework framework implicitly handles data association between events, which
is a central problem in event-based vision [14]. However, the contrast maxi-
mization framework doesn’t work when the event correspondences are wrongly
determined. Because of the self-occlusion and non-rigid deformation, events
generated close to each other can be caused by different mesh faces. However,
those events will be considered as corresponding events and be tried to warp
back to the same position in the contrast maximization framework.

An example of wrong event associations because of the self-occlusion is shown in
figure 5.8. The bottom subfigures show the hand before and after the deforma-
tion, respectively. The upper subfigure shows the generated events during the
deformation. It is clear that the events caused by the motion of the small finger
tip are caused by different mesh faces. Our experiments proves that contrast
maximization method doesn’t perform well for texture-less objects tracking.

In our observation, this effect happens more frequently when objects have less
texture. Our conclusion is that the events for texture-rich objects are mostly
caused by texture, while most events for texture-less objects are caused by the
boundary. Obviously, the boundary of objects is highly likely to suffer from
self-occlusion in the non-rigid deformation. Thus, our CM-texture-tracker cannot
perform tracking based on contour events.

2. During our experiments we found that the CM-texture-tracker is biased towards
some specific motion. As introduced in this section, we use sharpness measure-
ment of the IWE as the reward function. Figure 5.9 shows that the valid size of
IWE has strong impact on the final reward function: we reproject events in a
spatio-temporal window on to a further image plane (in 5.9a) and a closer image
plane (in 5.9b). Intuitively, the further image plane has a larger projected IWE and
the closer image plane has a smaller projected IWE. The larger IWE has a smaller
variance of 309.3432, while the smaller IWE has a larger variance of 446.1528.
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Figure 5.8.: Wrong events association because of the self-occlusion. Curves in cyan
indicate the mesh faces causing events around the small finger tip. Those
events caused by different faces will be considered as associated events in
contrast maximization framework, which is obviously wrong.

Instead of having a closer image plane, moving object far away from image plane
can also cause a smaller projection. We also show a landscape heatmap of reward
function value in section 6.2.2 to prove that contrast maximization framework has
bias in specific motion direction in our event-based objects tracking task.
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(a) Larger IWE, variance = 309.3432. (b) smaller IWE, variance = 446.1528.

Figure 5.9.: Reprojection of same events onto a further (a) and a closer (b) image plane.
The valid size of the IWE has strong impact on the reward function.

Given above mentioned limitations, our CM-texture-tracker can only process texture
events. For event streams containing both contour events and texture events, we
combine our EM-contour-tracker and CM-texture-tracker to deal with different type of
events. The full tracking framework is introduced in section 5.5.

58



5. Event-based Non-Rigid Tracking

Fi
gu

re
5.

10
.:

V
is

ua
liz

at
io

n
of

de
ta

ile
d

st
ep

s
in

co
nt

ra
st

m
ax

im
iz

at
io

n.
Ea

ch
st

ep
is

in
de

xe
d

w
ith

th
e

co
rr

es
po

nd
in

g
nu

m
be

r.
G

re
en

do
ts

at
fr

am
e

fr
om

t k
to

t k
+

S−
1

ar
e

co
rr

es
po

nd
in

g
ev

en
ts

ca
us

ed
by

th
e

sa
m

e
m

es
h

fa
ce

.
R

ed
do

ts
at

th
e

re
fe

re
nc

e
fr

am
e

t k
−

1
ar

e
w

ar
pe

d
ev

en
ts

th
ro

ug
h

re
pr

oj
ec

ti
on

pr
oc

es
s.

59



5. Event-based Non-Rigid Tracking

5.5. Full Tracking Framework

As introduced in section 5.3 and section 5.4, the CM-texture-tracker is appropriate to
deal with events that are caused by texture mesh faces, and the EM-contour-tracker is
suitable on events generated by contour mesh faces, which cannot find corresponding
mesh faces via the rasterization process. We distinguish contour events and texture
events as introduced in section 5.4. Afterward, we treat these two types of events with
EM-contour-tracker and CM-texture-tracker, respectively.

As introduced in section 5.4 and 5.3, the tracking framework using texture-CM and
contour-EM principle has their individual reward function. We use weights k1 and k2

to compensate for the scale between two reward functions. The final reward function
of our tracking framework is

obj_ f unc = k1 · E (LL (θk | a, ei)) + k2 ·∑
i,j

e(−IWE(i,j)∗p) (5.21)

The process of our final tracking framework is visualized in figure 5.11. The tracking
framework can be explained as a two-level expectation maximization framework. The
first level is to obtain the distribution of contour events among all events in the spatio
temporal window. We compute the probability of the face that has the highest likelihood
for each event being a contour face, and compare it with a threshold. If the probability
is above the threshold, we treat this event as a contour event and perform the second
level EM for association likelihood, which is the same framework as introduced in
figure 5.6. If the probability is below the threshold, we consider this event as a texture
event. We perform contrast maximization in section 5.4 on several texture events, which
internally maximize the likelihood that those texture events caused by the same texture
mesh face are warped back to the same position on the reference frame.

To increase the smoothness of the tracking process, we also have a constant velocity
regularizer term in our reward function. It is weighted by k3 and turns the final reward
function into

obj_ f unc =k1 · E (LL (θk | a, ei)) + k2 · rSoSA(IWE(θk))

− k3 ·
∣∣∣∣∣
∣∣∣∣∣
(

θk − θk−1

∆t
− (vk−1)

) ∣∣∣∣∣
∣∣∣∣∣
2

,
(5.22)

where θk is the optimized mesh pose of current spatio-temporal window, Wk, θk−1 is
the mesh pose of the last window, ∆t is the time difference from the last window to the
current window. k1, k2, k3 are hyperparameters and are tuned as in 3.3.
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Figure 5.11.: Two-level EM-based tracking framework. At the first level, the distribution
of contour situation of events is obtained. At the second level, the distribu-
tion of association situation among all faces of events is obtained. Similar
to figure 5.6, variables in green contain the gradient flow w.r.t. desired
pose θk.
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5.6. Sliding-Window Optimization

We perform sliding-window optimization in our full tracking framework (Sec. 5.5) to
increase the robustness. Figure 5.12 visualizes the combined tracking framework with
a sliding window of size s + 1. As illustrated in the figure, we warp all texture events
in spatio-temporal windows {Wk, Wk+1, ..., Wk+s} in the sliding window back to the
reference frame to generate the IWE. Then, we use SoSA to measure the sharpness of
the IWE. In addition to texture events, we can estimate the expectation of logarithmic
association likelihood for contour events in individual spatio-temporal window Wi. It
is written as E(LL(θi|ai, ei)). Thus, the reward function of the whole sliding window is

argmax
θk ,...,θk+s

(
k1 ·

k+s

∑
i=k

E(LL(θi|ai, ei)) + k2 · rSOSA(IWE(θk, ..., θk+s)) + k3 ·
k+s

∑
i=k
||vi − vi−1||2))

)
,

(5.23)
where {θk, ..., θk+s} are desired pose parameters in the sliding window. After the
optimization for current sliding window converges, we slide the optimization window
forward and initialize the pose parameters with the previous optimization result:

Algorithm 2 Initialization of parameters in sliding window

1: procedure Initialization

2: θk ← θk+1
3: θk+1 ← θk+2
4: · · ·
5: θk+s−1 ← θk+s
6: θk+s ← θk+s−1 + vk+s−1 ∗ dt

It is worth mentioning that for the last pose parameter θk+s, there is no previous
optimization result available. We use the velocity to initialize that variable as in equation
5.3.
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6. Experiment and Result

In this section, we report our experiments with the proposed non-rigid tracking meth-
ods introduced in chapter 5. Section 6.1 describes details of experiments, including
evaluation data, evaluation metrics, and implementation details. Section 6.2 shows the
quantitative result on synthetic data while section 6.3 shows the qualitative result on
real captured event data. Section 6.4 shows the experiments result of robustness of
our approach to different noises and section 6.5 shows the ablation study for the data
likelihood. Section 6.6 summarizes the achievements and limitations of our framework.

6.1. Experiment

6.1.1. Evaluation Data

All supported non-rigid object models are introduced in section 3.1. In experiments, we
simulated non-rigid motion of the hand (based only on MANO and SMPL-X), non-rigid
motion of the human body (based on SMPL-X), and rigid motion of YCB Benchmarks
objects, as in figure 6.1.

We simulated non-rigid deformation sequences for the following objects:

• MANO hand model with 45 PCA parameters: as introduced in section 3.1,
different poses of MANO hand can be obtained by the full 45-dimensional pose
space. Thus, the pose parameter here has the size of [1, 45].

• SMPL-X hand model with 6 PCA parameters: instead of using the full dimension
pose space, we can use 6 PCA parameters to control different poses of the hand.
The pose parameter here has the size of [1, 6]

• SMPL-X body model: similar to MANO hand model, different poses of body
model can be obtained by the rotation of 21 body joints. The basic pose parameter
for body model has the size of [21, 3]. Here, we only use the 3-DoF rotation the
left elbow joint to simulate the arm motion.

• Objects YCB Benchmarks: above mentioned models don’t contain enough texture.
In our experiments, we used a rubik cube which has a simple shape but the rich
texture. We simulate and track the rigid motion of the object.
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6. Experiment and Result

Figure 6.1.: Simulated RGB image (left) and corresponding accumulated events (right).
1st row: MANO hand model. 2nd row: SMPL-X hand model. 3rd row:
SMPL-X body model. 4th row: Rubik cube in the YCB Benchmarks.

65



6. Experiment and Result

6.1.2. Sequence description

In addition to different object models, we also simulated with random motion and
backgrounds with different textures. For random motion, we simulated sequences
with the randomized initial pose and the end pose. Besides, we had random rich-
texture images from YCB video dataset [42] as the background. It brings complexity in
tracking because the polarity of events is dependent on background color of individual
pixels. Simulation with texture background is also more realistic, because a pure color
background is extremely hard to get in the real life.

In the data simulation, we randomly draw initial pose, end pose, and background
image for each objects to generate the synthetic data. We also add uncertainty to
contrast threshold C and salt-and-pepper background noise as described in section 4.4
to close the sim-to-real gap. Here, we draw the contrast threshold from N (0.5, 0.0004).
The thresholds of positive and negative salt-and-pepper noise are set to 1× 10−5 and
4× 10−7, respectively.

6.1.3. Implementation Detail

We implemented our event simulator (Sec. 4) and event-based tracking framework (Sec.
5) in PyTorch and PyTorch3D. Since we used CUDA parallel processing operation (Sec.
3.4.2) to speed up the procedure, we used a NVIDIA 2080Ti GPU in our project.

Besides, it is worth mentioning that the human body and hand are texture-less object
and therefore do not generate many texture events in our observation. To increase
the computation efficiency, we treat all events in those sequences as contour events
and only apply EM-contour-tracker in section 5.3. Thus we only report results for
EM-contour-tracking for these sequences. For texture-rich objects, which generate both
texture events and contour events, we use the full tracking framework in section 5.5.

As illustrated in figure 5.3, we stacked 300 events into each spatio-temporal window
for synthetic event data with resolution of 1280× 720. For real event data captured by
Davis camera 1, it has a resolution of 240× 180 and therefore we stacked 100 events in
each window.

In the experiments of objects tracking, we use optuna [1] to tune hyperparameters
(Sec. 3.3) for different scenarios. The detail of parameter tuning and optimzied
hyperparameters can be found in Appendix A.2. As an optimization-based method,
we use Adam [18] as the optimizer.

1https://inivation.com/dvp/
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6.1.4. Evaluation Metrics

We have different evaluation metrics to perform the quantitative analysis of our tracking
framework. For non-rigid objects e.g. human body and hand, there is the joint regressor
available. A joint regressor can regress the mesh to skeleton joints. For MANO hand
[34] and SMPL body [25], we can get 3D joints from the pose parameters. Therefore,
we evaluate performance on the body and hand model with MPJPE (Mean Per Joint
Position Error)

MPJPE =
1
N

N

∑
i=1

∥∥Ji
GT − Ji

rec
∥∥

F
#Joints

, (6.1)

where N is the number of events temporal window; JGT and Jrec denote the ground-truth
and reconstructed 3D joint locations, respectively. #Joints is the number of involved
joints: in hand tracking experiments, the joints are 15 hand skeleton joints. In the body
tracking experiments, we only allow the 3-DoF rotation of the left elbow joint, which
brings only motion of the left hand skeleton and the left wrist. Thus, the number of
joints #J here is 16. Finally, ∥ · ∥F represents for the Frobenius norm, defined as

∥A∥F :=

√√√√ m

∑
i=1

n

∑
j=1

∣∣aij
∣∣2. (6.2)

In addition to the average 3D joints error, we also introduce the PCK (Percentage
Correct Keypoints) and the AUC (Area under Curve) to perform quantitative analysis
in more intuitive diagrams as figure 6.2. 3D-PCK describes the percentage of joints
which have MPJPE less than the error threshold. AUC calculates the area under the
3D-PCK curve. The larger the AUC, the better the tracking performance.

Figure 6.2.: An example of a 3D-PCK curve @50mm and the corresponding AUC.
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6.2. Evaluation on Synthetic Data

This section presents the tracking result on various objects introduced in 6.1.1. The
tracking result of non-rigid objects, e.g. hand and body, is shown in section 6.2.1.
We also evaluated our methods in terms of rigid tracking, including translation and
rotation. The result appears in section 6.2.2.

6.2.1. Non-Rigid Tracking

MANO Hand Tracking

We evaluated our non-rigid tracking methods here using 30 synthetic motion sequences
of MANO hand model. Each sequence has the random initial pose, random end
pose, and random background texture to simulate various hand motions in different
scenarios. As introduced in section 6.1.1, the pose of the MANO hand model is
parameterized by 45-dimensional parameters in PCA pose space. In the simulation,
each pose parameter was randomly sampled from [−π

2 ,+π
2 ]. We show a set of samples

from this pose range in section B.1. In the tracking process, we optimized 45 PCA pose
parameters to perform the tracking of the MANO hand model. We used the evaluation
tool to generate the qualitative result (Fig. 6.3) and quantitative result (Tab. 6.1). The
quantitative evaluation metrics are explained in section 6.1.4.

The input of our method is an asynchronous events stream split in several spatio-
temporal windows. Each window contains a fixed number of 300 events and have
therefore dynamic temporal length. We visualize the events in the first and the last
spatio-temporal window of a demo sequence in figure 6.3a and 6.3b, respectively. As
shown in figures, almost all events during the hand motion are generated by contour
mesh faces. As explained in section 6.1.3, we only deployed the EM-contour-tracker
(Sec. 5.3) on MANO motion sequences and report the corresponding results.

A qualitative evaluation of the tracking performance on the demo sequence is
visualized in figure 6.3. In the demo sequence, the background scene is texture-rich. In
addition, all 4 fingers bend together which means the demo sequence contains a large
hand motion. The ground-truth hand deformation is presented intuitively in figure
6.3c: the initial pose and the end pose are linearly blended, while the beginning pose is
semi-transparent. Figures in the first row (Fig. 6.3a, 6.3b) show the sparse events input
of our tracking framework. The initial and end reconstructed hand poses are visualized
in figure 6.3d. Again, the initial reconstructed hand is semi-transparent. The qualitative
result shows that given the highly sparse events input, our EM-contour-tracker can track
the hand motion accurately. More qualitative results can be found in the supplementary
material.
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(a) Accumulated events in the first spatio-
temporal window.

(b) Accumulated events in the last spatio-
temporal window.

(c) Ground-truth MANO hand motion of the
demo sequence. Hand before the deforma-
tion is semi-transparent.

(d) Reconstructed MANO hand motion of the
demo sequence. Hand before the deforma-
tion is semi-transparent.

Figure 6.3.: Events in individual spatio-temporal windows (above); Ground-truth and
reconstructed MANO pose before and after the motion (below), with initial
hand pose semi-transparent.

In addition to the qualitative result, we also present the quantitative tracking perfor-
mance in Table 6.1. The mean MPJPE is 4.52 mm and the mean AUC with the maximal
threshold at 50 mm is 90.67%. As shown in the table, the tracking performance is
different among all sequences depending on the complexity of the motions. The best
performance has 2.23 mm MPJPE and 95.09% AUC under 3D-PCK curve, while The
worst performance has 11.13 mm MPJPE and 77.64% AUC. The median performance
for all sequences is 4.27 mm for MPJPE and 91.20% for AUC. Besides, we compare our
approach with Nehvi’s method [26], which tracks the hand motion with asynchronous
event stream. It is also an optimization-based method and has the same object (MANO
hand) as our work. The quantitative comparison and 3D-PCK curve appear in Table 6.2
and figure 6.4.
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MANO Hand Tracking Experiments
Sequence Index MPJPE (mm) AUC @50mm (%)

1 11.1299 77.63586
2 6.66957 86.46130
3 3.75380 92.16196
4 4.27448 91.17013
5 4.50295 90.71420
6 2.90929 93.76926
7 6.21236 87.24349
8 4.02778 91.65868
9 3.23277 93.24739
10 3.06880 93.50493
11 6.51410 86.73701
12 2.23082 95.09228
13 5.56842 88.59130
14 5.48163 88.88439
15 3.58297 92.43402
16 4.29410 91.03303
17 4.00633 91.71540
18 4.26295 91.19046
19 3.70786 92.29227
20 4.22251 91.27442
21 4.49148 90.78849
22 4.34041 91.04166
23 4.33652 91.29684
24 4.35076 90.89650
25 4.32651 91.04011
26 3.73972 92.12859
27 4.23436 91.21348
28 3.89701 91.86095
29 3.90512 91.99237
30 4.34744 91.04467

Average 4.52076 90.67052101
Median 4.26872 91.20197

Best 2.23082 95.09228
Worst 11.12999 77.63586

Table 6.1.: Quantitative result of EM-contour-tracker on MANO hand motion sequences.
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We compare our approach quantitatively on synthetic event data with Nehvi’s event-
based MANO hand tracking method [26], which is based on the event generation model.
The background theory of Nehvi’s method is explained in section 2.4.1. To ensure the
fairness in the comparison, we tuned the hyperparmeters in Nehvi’s framework and in
our framework using ground-truth label of synthetic data. The quantitative result in
MPJPE and AUC under the 3D-PCK curve show intuitively that our EM-contour-tracker
outperforms Nehvi’s approach on the MANO hand tracking scenario.

mean MPJPE median MPJPE mean AUC median AUC
Nehvi et al. [26] 11.61 mm 10.85 mm 77.59% 78.68%
Ours 4.52 mm 4.27 mm 90.67% 91.20%

Table 6.2.: Results on synthetic MANO hand sequences

Given the qualitative result in figure 6.3 and the quantitative result in Table 6.1,
we can draw the conclusion on our EM-contour-tracker: although the input of our
tracking method is the sparse events stream shown in figure 6.3a and 6.3b, it can still
reconstruct the motion of the hand accurately. In other words, the event-based non-
rigid tracking method we proposed can extract the deformation information accurately
from the events stream, which is the limited input information. Last but not least, a
quantitative comparison of the tracking performance between our tracking method
and state-of-the-art event-based MANO hand tracking method [23, 35] is presented in
section 6.3.
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Ours Median      (AUC=91.20%)
Ours Average     (AUC=90.67%)
Nehvi's Median  (AUC=78.68%)
Nehvi's Average (AUC=77.59%)

Figure 6.4.: 3D-PCK curve on synthetic hand motion reconstruction
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SMPL-X Hand Tracking

For the evaluation of our tracking method on SMPL-X hand tracking, we generated
synthetic motion sequences based on SMPL-X hand model. Similar as the MANO
sequences mentioned previously, each sequence generated here has the random initial
and end pose to simulate different hand motion. As introduced in section 6.1.1, the
pose of a SMPL-X hand model is parametrized by 6 parameters in the PCA pose space.
In the simulation, all 6 parameters were sampled from a uniform distribution with the
range of [−π

2 ,+π
2 ], similar to MANO evaluation sequences. In the tracking process, we

optimized 6 pose parameters to perform the tracking of the SMPL-X hand model. We
present the qualitative and the quantitative results in this section.

Our tracking method takes only events as input, as shown in figures 6.5a and
6.5b. Similar as the simulated MANO sequences, the events during the motion of
SMPL-X are also generated mainly by contour mesh faces. Thus, we only deployed
EM-contour-tracker (Sec. 5.3) to perform the hand tracking, as explained in section
6.1.3.

A qualitative tracking result of the SMPL-X hand motion demo sequence is presented
in figure 6.5. The input events of the demo sequence are shown in the first row. The
ground-truth hand motion is illustrated in figure 6.5c, and the reconstructed hand
motion using our tracking method is in 6.5d. In both figures, the initial hand poses are
semi-transparent. The qualitative result shows that the reconstructed end hand pose is
exactly similar as the ground-truth end pose. According to that, we can say that our
tracking method works well on the tracking task of the SMPL-X hand motion.

In addition to the qualitative result of the demo sequence, we show the quantitative
performance of our approach for all sequences in Table 6.3. We also visualize the
3D-PCK curve in figure 6.6a. Our approach on the SMPL-X hand motion sequences has
the average MPJPE of 1.11 mm and has 96.38% AUC under 3D-PCK curve. The median
performance among all sequences shows that our approach has 0.76 mm MPJPE and
97.27% AUC. The sequence 7 has the best performance with MPJPE of 0.12 mm, which
means each joint has only 0.12 mm error w.r.t. ground-truth position on average and it
is a tiny reconstruction error. The sequence 5 has the worst performance. However, it
has the MPJPE of 4.37 mm, which is still a small reconstruction error. Thus, we conclude
that our approach is appropriate for the tracking of SMPL-X hand motion.

We can compare the performance of our approach on MANO hand motion recon-
struction (Tab. 6.1) and SMPL-X hand motion reconstruction (Tab. 6.3).

Motion Sequences Mean MPJPE (mm) Median MPJPE (mm)

MANO Hand 4.52076 4.26872
SMPL-X Hand 1.10835 0.76377
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SMPL-X Hand Tracking Experiments
Sequence Index MPJPE (mm) AUC @50mm (%)

1 0.64099 97.61057
2 1.33952 96.29861
3 1.83420 95.06832
4 0.54154 97.67787
5 4.37342 90.53448
6 1.95539 95.08425
7 0.12334 97.64257
8 0.68217 97.49362
9 0.61206 97.04586
10 1.40122 96.24539
11 0.37895 97.86953
12 1.09043 96.86055
13 1.07047 96.88518
14 0.80958 90.26266
15 0.86362 97.21003
16 0.32528 97.92473
17 2.30138 94.56938
18 1.29191 96.49254
19 0.80604 97.32147
20 1.05453 96.80513
21 0.33178 97.74533
22 0.60639 97.59841
23 0.28463 97.95401
24 0.72150 97.41465
25 4.21576 90.85210
26 0.56281 97.67582
27 0.51449 97.77622
28 0.52726 97.73778
29 1.51441 96.08000
30 0.47584 97.70191

Average 1.10835 96.38130
Median 0.76377 97.26575

Best 0.12334 97.95401
Worst 4.3734 90.26266

Table 6.3.: Qualitative result of EM-contour-tracker on SMPL-X hand motion sequences.
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(a) Events in the first spatio-temporal window
of SMPL-X hand motion.

(b) Events in the last spatio-temporal window
of SMPL-X hand motion.

(c) Ground-truth SMPL-X hand poses of the
demo sequence.

(d) Reconstructed SMPL-X hand poses of the
demo sequence.

Figure 6.5.: Events in individual spatio-temporal windows (above); Ground-truth and
reconstructed SMPL-X hand pose before and after the motion (below), with
the initial hand pose semi-transparent.

The result in the table above shows that our approach achieves better performance
on SMPL-X hand model than single MANO hand model. It is worth mentioning that
the results are not from the same motion sequences, but the PCA pose parameters are
randomly drawn from the uniform distribution with the same range. Our analysis is
that the difference can be caused by the dimension of pose parameters. As introduced
in section 6.1.1, MANO model is controlled by 45-dimensional pose parameters which
span the whole hand pose space, while SMPL-X hand model only uses the first 6 PCA
parameters. Essentially, the SMPL-X hand motion sequences have 6 pose parameters
to optimize, while the MANO hand motion sequences have 45 pose parameters to
optimize, which is more complex for the optimizer. Thus, the comparison above is
unfair and does not contain much information. According to Romero, Tzionas, and
Black [34], the 6 first pose parameters span about 81% hand pose space. Therefore,
SMPL-X suffice to model most common hand poses. In practice, we can use SMPL-X
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hand to model and reconstruct the hand motion.
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(a) SMPL-X hand.
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(b) SMPL-X arm and hand.

Figure 6.6.: 3D-PCK curve @50mm of SMPL-X hand (a) as well as SMPL-X body and
hand (b) reconstruction.

SMPL-X Arm and Hand Tracking

Finally, we show the tracking performance on combined motion of SMPL-X body and
hand model. The hand pose is parametrized by 6 PCA parameters, while the body pose
is parametrized by the 3 rotation parameters of the left elbow joint. The rotation around
the elbow joint brings motion of the left arm and the left hand. Thus, the motion here
can be seen as the reconstruction of deformation, rotation, and translation of the hand.
In this experiment, the hand and the elbow joint have their motion simultaneously. In
the simulation, we sampled the hand pose parameters from a uniform distribution with
range of [−π

2 ,+π
2 ], and sampled the elbow joint rotation parameters from a uniform

distribution with the range of [0, 1]. We show a set of samples from this pose range in
section B.3. In the tracking experiment, we jointly optimized for 3 rotation parameters
of the left elbow and 6 PCA parameters of the left hand to perform the tracking of the
SMPL-X arm and hand motion.

Our approach takes asynchronous event stream as input and stacks 300 events into
each spatio-temporal window to reduce the computation time. The accumulated events
in the first and the last spatio-temporal window (Sec. 5.2) are visualized in figures 6.7a
and 6.7b, respectively. Similar to previous experiments, we only deploy EM-contour-
tracker (Sec. 5.3) because almost all events are generated by contour mesh faces in our
observation.

We visualize the qualitative tracking result on figure 6.7. The input event stream is
illustrated in the first row, while the ground-truth and the reconstructed arm and hand
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motion are shown in figure 6.7c and 6.7d, respectively. The initial pose of the arm and
hand are in transparent. The qualitative result shows that our tracking method can
reconstruct the motion of arm and hand in the demo sequence accurately.

(a) Events in the first spatio-temporal window
of SMPL-X body and hand motion.

(b) Events in the last spatio-temporal window
of SMPL-X body and hand motion.

(c) Ground-truth SMPL-X body and hand
poses of the demo sequence.

(d) Reconstructed SMPL-X body and hand
poses of the demo sequence.

Figure 6.7.: Events in individual spatio-temporal windows (above); Ground-truth and
reconstructed SMPL-X body and hand pose before and after the motion
(below), with the initial pose semi-transparent.

In addition to the qualitative result of the demo sequence, we show the quantitative
evaluation result of all sequences of the SMPL-X arm and hand motion in Table 6.4.
The corresponding 3D-PCK curve is shown in figure 6.6b. Here, our tracker achieves
the average MPJPE of 15.39 mm and 80.98% AUC under the 3D-PCK curve. Besides,
we also show the median reconstruction performance of our method among all test
sequences: it achieves 3.92 mm as MPJPE and 92% as AUC. The median result shows
that our approach can accurately reconstruct the combined arm motion and the hand
motion.

Apparently, our approach fails in sequence 1 and sequence 9. We investigated into
why our approach fails in these two sequences. We visualize the groud-truth images,
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SMPL-X Arm and Hand Tracking Experiments
Sequence Index MPJPE (mm) AUC @50mm (%)

1 114.93061 8.44076
2 4.13422 91.64820
3 2.02904 95.64299
4 6.02724 87.93815
5 1.24610 97.01994
6 6.52830 86.88121
7 3.06240 93.68731
8 8.78230 82.41097
9 83.72781 7.29643
10 12.59070 74.82034
11 12.24150 76.21525
12 1.96041 95.82178
13 3.50925 92.93285
14 1.89513 96.10460
15 3.71677 92.54633
16 3.69315 92.44335
17 2.18549 95.42289
18 4.72697 90.45637

Average 15.38819 80.98498
Median 3.92549 92.04578

Best 1.24610 7.29643
Worst 114.93061 97.01994

Table 6.4.: Qualitative result of EM-contour-tracker on SMPL-X arm and hand motion
sequences.
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input event stream, and reconstructed arm and hand in figure 6.8. The initial pose
is in the blue bounding box, and the final pose is in the green bounding box. Figure
6.8b shows that the hand at the initial pose does not generate valid events. The reason
can be inferred from figure 6.8a: the fingers at the initial pose has the similar color
as the background. According to the event generation model (Eq. 4.1), no events are
generated by the motion of fingers. The lack of events leads to the failure case of our
approach on sequence 1. However, as illustrated in figure 6.8c, our EM-contour-tracker
can still reconstruct the arm motion, because the events of arm motion are generated as
usual.

(a) Ground-truth motion in se-
quence 1. (b) Events in sequence 1.

(c) Reconstructed arm and
hand pose in sequence 1.

Figure 6.8.: Analysis of the failure case of our EM-contour-tracker on sequence 1 in
SMPL-X arm and hard tracking

In section 6.2.1, we show the qualitative result of our tracking method on MANO hand
motion, SMPL-X hand motion, and SMPL-X body motion sequences. As illustrated
in figures of input events (Fig. 6.3a, 6.3b, 6.5a, 6.5b, 6.7a, 6.7b), we can observe that
those events are mainly generated by the motion of contour of mesh faces. Thus, we
deployed the EM-contour-tracker (Sec. 5.3) to perform the event-based tracking of
above mentioned non-rigid objects. Generally, our method has a solid performance on
non-rigid objects, e.g. arm and body, only based on sparse events input.

6.2.2. Rigid Tracking

Because the body-related non-rigid objects don’t contain much texture, the events are
not likely to be generated by texture mesh faces. Thus, we also perform the rigid
tracking of the objects in YCB Benchmarks. As illustrated in the last row of figure 6.1,
the rubik cube can generate texture events by the hole on the surface. Besides, events
generated because of the motion of boundary edge are still considered as contour
events. Thus, we deploy our combined framework (Sec. 5.5) to perform the event-based
tracking of rigid-motion sequences of the rubik cube.

During our experiments, we found that the our tracking method is biased towards
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the translation along z-axis in 6-DoF rigid objects tracking. We show the analysis of
this phenomenon at the end of the section. Thus, we simplify the 6-DoF tracking to
3-DoF planar motion tracking, namely fix the depth value of the object. We use the
ATE (Absolute Trajectory Error) as the evaluation metric:

ATEtrans =
1
m

(
m

∑
i=1

∥∥∥pi
rec − pi

gt

∥∥∥2
) 1

2

, (6.3)

ATErot =
1
m

m

∑
i=1

(
̸
(

Ri
rec · Ri

gt
−1
))

(6.4)

We evaluate our tracking framework with 3-DoF motion sequences, combining the
1-DoF planar rotation and the 2-DoF planar translation. We show the root mean squared
translation error and the mean rotation error in Table 6.5. The results shows that our
proposed tracking framework (Sec. 5.5) performs well in the planar rotation tracking
only using event stream.

ATEtrans (mm) ATErot (◦)

3-DoF Planar Motion 1.9667 5.9530

Table 6.5.: Results on synthetic 3-DoF planar motion sequences of rigid objects.

As mentioned before, our proposed tracking framework (Sec. 5.5) is biased towards
the translation along z-axis. Our analysis is that the contrast maximization (CM) term
(Sec. 5.4) brings this effect. It can be explained by the area of projected events as shown
in figure 5.9: the larger z-value for the object is optimized, the smaller area all events are
warped to. When the number of warped events does not change, the smaller projection
area means more concentrated events and therefore a higher sharpness of the IWE.

Theoretically, our EM-contour-tracking term can help in avoiding the bias in the
z-direction. As introduced in section 5.5, we use the dot product between the mesh
face and the event bearing vector to decide whether the event is classified as contour
events or texture events. Basically, EM term (Eq. 5.17) has smaller reward when object
depth is smaller, because less events will be classified as contour events. In the loss
landscape (Fig. 6.9), the EM term can partly avoid the bias in translation along the
z-direction. However, the ground-truth pose is still not at the local minimum of our
objective function. We believe that the current combined framework (Sec. 5.5) needs
more regulation to perform the 6-DoF tracking.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.9.: Loss landscape of CM (Left) and combined CM + EM (right). It shows that
our proposed full tracking method, which combines EM-based term with
CM-based term, can partly overcome the bias towards translation along
positive-Z direction. For all plots, X-axis represents the translation along Z.
Y-axis represents rotation in x, rotation in y, and rotation in z for (a) and (d),
(b) and (e), (c) and (f), respectively. Cross represents the ground-truth pose.
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6.3. Real Data Experiment

In addition to experiments on synthetic sequences, we did hand tracking experiments
on real data sequences. We used Davis 240C camera 2 for recording events at 1 MHz as
the input of our tracking framework and recording intensity frames at 24 FPS as the
visual reference.

Our method assumes that the initial parameters are known. For the initialization
of the MANO model, we deployed the pre-trained model of MeshGraphormer [23]
to infer the mesh model from the grayscale image. Then, we minimized the Chamfer
distance between the inferred mesh and the predicted mesh to optimize for shape and
pose parameters. We manually adjusted the global rotation and translation of the hand
model to align the rendered hand image with the captured hand image.

(a) Captured hand image (b) Rendered hand image (c) Aligned hand images with
adjusted R and T

Figure 6.10.: Initial MANO hand model parameters estimation of real demo sequence.

The noise is an unavoidable issue for event cameras. In our experiments, we observed
a huge amount of noisy events which are not generated by the hand motion. Thus, we
activated the Davis noise filters while capturing the event data. However, there are still
background noise events captured as shown in figure 6.11a. To deal with these events,
we have a filtering mechanism in our tracking framework: the event whose unprojecting
ray having the lateral distance to the closest mesh face larger than a threshold is marked
as a noisy event. In other words, the noisy event is far away from the mesh and is
unlikely to be caused by the mesh model. This method effectively blocks noisy events
in the final tracking framework.

Similar as hand tracking experiments on synthetic sequences, we deployed EM-
contour-tracker here. Each spatio-temporal window contains 100 events. We show the
first and the last event frame on the first row, and show the qualitative tracking result

2https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf
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on the second row in figure 6.11. The qualitative result shows that our tracking method
performs well on captured real event data.

Compared to tracking results on synthetic sequences in figure 6.3, the tracking per-
formance on real event data is worse. Our analysis is that the estimated initial MANO
parameters is not 100% accurate as in synthetic sequences, and the noise filter cannot
filter all noisy events which are not generated by the hand motion. Besides, we don’t
have ground-truth pose parameters in real data sequences to tune the hyperparameters
of our tracking framework. These limitations can introduce the additional error into
the final tracking performance.

(a) First event frame, events far away from
hand image are background noise events

(b) Last event frame

(c) Captured hand motion (d) Reconstructed hand motion

Figure 6.11.: Input event buffers (first row); Captured hand motion and reconstructed
hand motion (second row) of real data demo sequence.

We show the qualitative comparison between our method and Nehvi’s appraoch [26],
EventHands [35], and MeshGraphormer [23] on real captured data in figure 6.12.
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6. Experiment and Result

The results show that our approach qualitatively has the best reconstruction result
compared to event-based method [26, 35]. Besides, our method doesn’t suffer from
the motion blur and has the reconstruction with a very high temporal resolution
(125 event frames v.s. 3 intensity frames). It shows that our approach outperforms
Meshgraphoermer [23] in these two metrics.

6.4. Robustness to Noise

We show the robustness of our proposed EM-contour-tracker (Sec. 5.3) to different
classes of noise. We demonstrate the investigation in the SMPL-X hand motion recon-
struction.

Robustness to initial template noise

As a template-based approach, the initial template is essential for our method. We
first demonstrate that our approach is robust to the noise of the initial template. Here,
we sample 6-dimensional initial pose parameters of the SMPL-X hand model from
a Gaussian distribution with the mean of ground-truth values and different level of
standard deviations.

The 3D-PCK curve and AUC value of each standard deviation are in Fig. 6.13. The
result shows that our approach still has the AUC of 86% when the standard deviation is
already 0.8, which illustrates that the proposed method is robust to the noise of initial
template.
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= 0.8       (AUC=86.21%)

Figure 6.13.: Robustness to different level of initial template noise
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Robustness to uncertainty of contrast threshold

A real event-based camera has uncertainty in the contrast threshold [12], which brings
noise in the captured event stream. In our simulator, we already model the uncertainty
by sample the contrast threshold from N (0.5, 0.0004) (Sec. 4.4). To demonstrate that
our approach is robust to different level of uncertainty in the contrast threshold, we
use different levels of standard deviation for contrast threshold sampling.

We show the 3D-PCK curves and AUC values of different noise levels in Fig. 6.14a.
The result shows that our approach is not much affected by the uncertainty of the
contrast threshold.
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(a) Robustness to different level of contrast
threshold uncertainty.
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(b) Robustness to different level of salt-
and-pepper noise.

Figure 6.14.: Robustness to different level of uncertainty in contrast threshold and of
salt-and-pepper noise.

Robustness to salt-and-pepper noise

An event-based camera suffers from the salt-and-pepper noise [12]. We model the salt-
and-pepper noise by sampling the probability at each pixel from a uniform distribution
and compare with a threshold (Sec. 4.4).To model the different level of the salt-and-
pepper noise, we select different threshold θ.

We show the 3D-PCK curves and AUC values of different thresholds in figure 6.14b.
It shows that our EM-contour-tracker has solid performance to different amount of
salt-and-pepper noise. Our method still achieves considerable performance by the
threshold of 10−3, which corresponds to a high amounts of salt-and-pepper noise and
it is unlikely happen in the real-world scenario.

Given the quantitative evaluation in figure 6.13 and 6.14, we can draw the conclusion
that our approach is robust to initial template noise, uncertainty on contrast threshold,

85



6. Experiment and Result

and salt-and-pepper noise. Our analysis is that, we have advantages in robustness to
noise as a 3D-geometric based approach. For example, we only consider event who
have the minimal lateral distance (Fig. 5.4) smaller than a threshold. Otherwise it is
considered as an outlier event. It effectively reject the salt-and-pepper noise on the
background.

6.5. Ablation Study

In the ablation study, we investigate variants of the data likelihood term formulated
for E-step (Eq. 5.8) and M-step (Eq. 5.9). The data likelihood of E-step is formulated
by the lateral probability, the longitudinal probability, and the contour probability. In
the ablation study, we formulate the data likelihood in the E-step by either lateral
probability and longitudinal probability:

P
(
ei| f j, θk

)
∝ Plateral · Plongitudinal , (6.5)

or the lateral probability and the contour probability:

P
(
ei| f j, θk

)
∝ Plateral · Pcontour. (6.6)

The proposed data likelihood in the M-step is formulated by the lateral probability
and the longitudinal probability. In the ablation study, we formulate the data likelihood
only with the lateral probability:

P
(
ei| f j, θk

)
∝ Plateral . (6.7)

We demonstrate the ablation study in the SMPL-X hand motion reconstruction. The
quantitative results of above mentioned variants are shown in Table 6.6.

MPJPE (mm) AUC (%)

E3M2 (Eq. 5.8, 5.9) 1.5289 95.9308
E2normalM2 (Eq. 6.6, 5.9) 1.6523 93.5601
E2longitudinalM2 (Eq. 6.5, 5.9) 2.2500 92.7352
E3M1lateral (Eq. 5.8, 6.7) 1.9891 92.8573

Table 6.6.: Ablation Study on probability terms of the data likelihood in the E-step and
the M-step

The quantitative results in table above show that the contour probability is essential
for the formulation of the data likelihood term both in the E-step and the M-step. It
also shows that introducing longitudinal probability in the E-step can slightly improve
the performance. Thus, our current data likelihood formulation (Eq. 5.8, 5.9) is the best
variant on the SMPL-X hand sequences.
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6.6. Conclusion

Here, we summarize the achievement and the limitation of our proposed approach (Sec.
5.4, 5.3, 5.5) given the experiment results in previous sections. Section 6.2.1 presents
the performance of our EM-contour-tracker on the human arm and hand tracking.
Intuitively, arm and hand do not contain much texture and therefore the most events
are contour events generated by the motion of boundary edges. The quantitative and
qualitative results show that our EM-contour-tracker accurately reconstructs the hand
and arm motion. We also show the qualitative comparison with state-of-the-art event-
based [35] and RGB-based [23] hand tracking and reconstruction methods in section 6.3.
It shows that our approach outperforms the state-of-the-art event-based hand tracking
methods in accuracy. Besides, our approach does not suffer from motion blur in high
speed motion, and can have much higher temporal resolution reconstruction result
than the RGB-based method. In section 6.4, we show that our approach is robust to
the initial template noise, the uncertainty of the event generation threshold, and the
salt-and-pepper noise. The robustness is essential for our framework to perform well
on real event data. Thus, we draw the conclusion that our EM-based contour tracking
framework works well and is suitable in human hand tracking.

We show the performance of the combined contrast maximization and EM-contour-
tracking framework on rigid object tracking. Although results in Table 6.5 show that
our full tracking framework performs well in 3-DoF motion tracking, the CM term has
bias towards the translation in z-axis and is limited to perform the full 6-DoF motion
tracking. We analyze the bias in section 6.2.2 and figure 6.9 shows that our proposed
EM term can partly overcome the bias. The tracking of the full 6-DoF motion is one of
the future work of our approach.
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7. Overview and Outlook

In this chapter, a summary and some continuing concepts and work regarding the
presented event-based non-rigid tracking methods are given. In section 7.1, a conclusion
of the whole project is drawn. It includes the summary of our proposed approach and
the experiments. We also present our analysis including contributions and limitations
of our approach based on experiment results. Section 7.2 introduces several modern
frameworks which are due to limited time and lack of prior knowledge have not been
explored and implemented in the project.

7.1. Conclusion

7.1.1. Summary

Event-based cameras have received much attention in recent years due to their bio-
inspired properties. Prior works show that event-based cameras have the great potential
in the compute vision tasks with high-speed motion and high-dynamic-range scenarios
[21, 40]. Recently, event-based cameras are deployed in the capture of non-rigid
object, e.g. human bodies and hands. Nehvi, for example, designed a template-based
hand tracking framework using event generation model [26]. Rudnev trained a fully-
supervised neural network using synthetic event data to perform the hand tracking task
[35]. However, these studies either have poor tracking performance or have not focused
on the self-supervisory from event stream. In this study we proposed a event-based
non-rigid tracking framework using the contour expectation maximization tracking
algorithm and the contrast maximization framework, which can perform tracking under
the self-supervisory from the event stream.

To generate the synthetic event data of non-rigid objects, we developed an event
stream simulator (Cha. 4) extending from Nehvi’s simulator [26] and ESIM [31]. Our
simulator increases efficiency in the event generation process by the adaptive sampling
and the parallel programming. We show the comparison with state-of-the-art event
simulators [26, 31, 35] in section 4.6.

We demonstrated that events can be classified into texture events and contour events.
Texture events do not suffer from self-occlusion (Fig. 5.8), they are feasible to be dealt
with the contrast maximization algorithm [14]. For contour events, we proposed a novel
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approach which maximizes the expectation of the data likelihood given the association
between events and corresponding mesh faces (Sec. 5.3). In the full tracking framework
(Sec. 5.5), we distinguish contour events and texture events, and process them with
appropriate tracking framework.

We evaluate our proposed event-based tracking approach (Sec. 5.3) with experiments
(Cha. 6). It shows that our EM-contour-tracker performs well in the tracking of the
texture-less objects motion, because most events are generated by contour mesh faces.
For texture-rich objects, we show that our full tracking framework (Sec. 5.5) can work
in the 3-DoF rigid motion tracking, but is not feasible in the full 6-DoF motion tracking.

7.1.2. Analysis

Here, we analyse our approach based on experiment results appearing in Chapter 6. In
our project, we proposed the contour expectation maximization tracking approach for
contour events and proposed the contract maximization tracking approach for texture
events. We show experiments and results in Chapter 6.

We used EM-contour-tracker to arm and hand motion sequences, since human arm
and hand are texture-less and most events are then generated by the motion of boundary
edges (Fig. 6.1). We show the results in section 6.2.1 that the proposed method is ideally
capable for scenarios where most events are caused by the contour of objects. Our
analysis is that for contour events, finding the corresponding mesh face and aligning
them by maximizing the expectation of the measurement likelihood of association is an
effective approach to reconstruct the non-rigid motion. Most notably, we compare our
approach with state-of-the-art hand tracking and reconstruction works (Sec. 6.3) and
demonstrate that our approach outperforms them in different metrics. Since there is no
previous work addressing the event-based non-rigid tracking problem using contour
events, this study therefore indicate that our proposed EM-contour-tracking approach
can bring a contribution to the scientific community.

However, there is a limitation of our EM-contour-tracking approach. Assuming an
non-contour event whose unprojection ray intersects with a mesh face, it already has
high expectation over the measurement likelihood of the association. It means that
our contour-EM-tracker is not feasible to reconstruct the motion from texture events.
Thus, the contour-EM-tracking approach fails if texture events are wrongly classified as
contour events.

We proposed a tracking method based on the contrast maximization algorithm (Sec.
3.6) to process texture events. Since motion of texture-rich objects generate both texture
events and contour events, we use the dot product between the event bearing vectors
and mesh face normals to formulate the contour probability and distinguish contour
events and texture events. We show the rigid tracking experiment in section 6.2.2. The
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result shows that our proposed combined tracking framework (Sec. 5.5) can perform
the tracking of the 3-DoF planar rigid motion. Because there is no previous work using
contrast maximization framework [14] to perform the object tracking, we think our
approach could be a contribution to the scientific community.

However, the combined tracking framework still has limitations. We found that the
contrast maximization framework has a bias towards the translation along the positive
z-direction in the full 6-DoF rigid motion tracking. The reason for the bias is that
the larger z value for objects corresponds to a smaller projection area and therefore
a higher contrast of the final IWE (Fig. 5.9). We showed in figure 6.9 that adding
EM-contour-tracking term to the contrast maximization term can avoid partly the above
mentioned bias. However, the ground-truth value is still not at the local minimum of
the loss landscape (Fig. 6.9) and the gradient is unclear. Thus the 6-DoF rigid motion
tracking is a limitation of our proposed combined tracking framework. This limitation
could be addressed in future works (Sec. 7.2).

Finally, we analyse the run-time of our EM-contour-tracking approach. For hand
sequences, the tracking method takes averagely 8.76 seconds for 100 iteration steps for
a spatio-temporal window (Sec. 5.2) of events. For human body sequences like arm
and hand motion, the tracking method takes averagely 50.72 seconds for 100 iteration
steps for each window. Note that the hand mesh model has 1538 mesh faces while the
body mesh model has 20908 mesh faces. In our EM-contour-tracking approach, we
calculate the data likelihood of an event and each mesh face of the model, which is
computationally expensive. Besides, it is also redundant because an event can only be
caused by several closest mesh faces. Thus, our approach has limitation to perform the
real-time tracking.

7.2. Future Works

As explained in section 6.2.2, our proposed framework has bias towards translation
in the z-direction in the 6-DoF motion tracking. Thus, one of the future work is the
avoidance of the bias. The expectation maximization contour tracking term can partly
avoid the bias (Fig. 6.9). Apparently, it needs more regulation on existing tracking
framework to perform the full 6-DoF tracking.

Another aspect to improve is the computational time. As an optimization-based
method, our approach needs multiple steps until loss function converges. Although we
parallelized the event processing by using PyTorch and CUDA, it still does not achieve
the real-time performance. Therefore, one of the future work could be the optimizing
of the code structure and implement it efficiently in C++. Besides, the data likelihood
computation in the EM-contour-tracker is computationally expensive and redundant.
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This can be addressed in future works by associating events only to several closest
mesh faces to compute the data likelihood. In addition, we can extend our approach
to a learning-based method. It will achieve the real-time performance, because the
inference is extremely fast for trained a neural network.

Recently, several learning-based works for event-based hand tracking and reconstruc-
tion are published. Essentially, it is difficult to obtain the ground-truth label for real
data. Rudnev [35] proposed that it is possible to train a neural network on synthetic
event data and infer the hand pose on real event stream. As an optimization-based
approach, results in section 6.2.1 show that our objective function performs well in arm
and hand tracking. Thus, we can extend our method to a self-supervised hand tracking
framework, which can be trained with real event data without ground-truth labels. It
can be divided into the following steps:

• Pre-training: we can pre-train the neural network using synthetic event data with
ground-truth labels. The synthetic data can be used to initialize the weights of
neural network, which could reduce the time of the training stage.

• Training: Given the real event data input, the pre-trained network can predict
hand pose parameter θ. We generate the 3D hand model given the pose parameter
θ. Then, we calculate the negative logarithmic expectation of the data likelihood
given associations (Sec. 5.3), which can be used as the loss function of the neural
network and should be minimized.

• Inference: Once the training with real event data is done, we can perform the
inference with the trained network and predict the hand pose parameter directly
from the real event data. The inference should achieve the real-time performance.

We also visualize each individual stage intuitively in figure 7.1.
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(a) Initialize weights of neural network with synthetic event data.

(b) Train neural network using proposed self-supervisory with real event data.

(c) Infer hand pose from real event data using trained network.

Figure 7.1.: Pre-training(a), training(b), and inference(c) of the self-supervised method
using our proposed objective function. Event stream and Event frame are
from [35].
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A. Hyperparameter

A.1. Hyperparameter Tuning

As introduced in section 3.3, we use optuna [1] to tune all hyperparameters in our
framework. Essentially, we have following hyperparameters in our approach:

• α: sharpness control variable for lateral distance (Eq. 5.5)

• β: sharpness control variable for longitudinal distance (Eq. 5.6)

• γ: sharpness control variable for normal dot product (Eq. 5.1)

• k1: weights of expectation maximization term (Eq. 5.22)

• k2: weights of contrast maximization term (Eq. 5.22)

• k3: weights of constant velocity term for hands (Eq. 5.22)

• c: Huber scale (Eq. 5.5)

• lr: step size of Adam optimizer

• θlateral_distance: lateral distance threshold for inlier events

• θexpectation_update: gradient threshold for updating hidden variable distribution of
EM-method

• θearly_stop: gradient threshold for early stopping after the convergence of the
optimization

• outlier_likelihood: likelihood to downweight outlier events. Appears on the
denominator of the hidden variable distribution term (Eq. 5.13)

For each scenario, we have 10 training sequences to tune the hyperparameters. We
use the MPJPE (Sec. 6.1.4) as the metric of the loss function. Optuna will find the
smallest MPJPE error for the hyperparameters.
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A.2. Hyperparameter Applied

We show the hyperparameters we used in the experiments (Cha. 6). Depending on the
scenarios, we have different settings of hyperparameters for the motion reconstruction
based on the MANO model and the SMPL-X model. The loss of the hyperparameter
tuning is visualized in figure A.1.

MANO

• α = 3.104415774078913× 10−6

• β = 0.2766735382305266

• γ = 11.398513831616794

• k1 = 0.000101846010110427

• k2 = 0.0, only EM-tracker (Sec. 5.3) deployed

• k3 = 7.030594621430028× 10−5

• c = 0.005964889664885093

• lr = 0.00065505427907943

• θlateral_distance = 0.01124935159840215

• θexpectation_update = 0.23403676564874817

• θearly_stop = 2.6222626765129198× 10−8

• outlier_likelihood = 5.099061715891875× 10−10

SMPL-X

• α = 1.0304767369667457× 10−7

• β = 0.10679963391728674

• γ = 0.10986587419562713

• k1 = 1.0

• k2 = 0.0, only EM-tracker (Sec. 5.3) deployed

• k3 = 0.00789683086
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• c = 1.0

• lr = 0.003150912997278243

• θlateral_distance = 0.0022776835235587

• θexpectation_update = 13.811671131591776

• θearly_stop = 1.2568652735513764× 10−8

• outlier_likelihood = 1.0× 10−10
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(a) Optuna loss for MANO scenario
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(b) Optuna loss for SMPL-X scenario.

Figure A.1.: Optuna loss of the hyperparamters tuning for different scenarios.
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B. Sampled Data

We visualize here the some randomized pose of different objects.

B.1. MANO

Figure B.1.: Some sampled poses in synthetic MANO hand sequences.

B.2. SMPL-X Hand

B.3. SMPL-X Arm and Hand
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Figure B.2.: Some sampled poses in synthetic SMPL-X hand sequences.

Figure B.3.: Some sampled poses in synthetic SMPL-X arm and hand sequences.
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