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Abstract—Creating realistic 3D objects and clothed avatars from a single RGB image is an attractive yet challenging problem. Due to
its ill-posed nature, recent works leverage powerful prior from 2D diffusion models pretrained on large datasets. Although 2D diffusion
models demonstrate strong generalization capability, they cannot guarantee the generated multi-view images are 3D consistent. In this
paper, we propose Gen-3Diffusion: Realistic Image-to-3D Generation via 2D & 3D Diffusion Synergy. We leverage a pre-trained 2D
diffusion model and a 3D diffusion model via our elegantly designed process that synchronizes two diffusion models at both training
and sampling time. The synergy between the 2D and 3D diffusion models brings two major advantages: 1) 2D helps 3D in
generalization: the pretrained 2D model has strong generalization ability to unseen images, providing strong shape priors for the 3D
diffusion model; 2) 3D helps 2D in multi-view consistency: the 3D diffusion model enhances the 3D consistency of 2D multi-view
sampling process, resulting in more accurate multi-view generation. We validate our idea through extensive experiments in
image-based objects and clothed avatar generation tasks. Results show that our method generates realistic 3D avatars and objects
with high-fidelity geometry and texture. Extensive ablations also validate our design choices and demonstrate the strong generalization
ability to diverse clothing and compositional shapes. Our code and pretrained models will be publicly released on our project page.

Index Terms—3D Generation, Object Reconstruction, Human Reconstruction, Synchronized Diffusion Models
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1 INTRODUCTION

C REATING realistic 3D content is crucial for numerous
applications, including AR/VR, as well as in the movie

and gaming industries. Methods for creating a 3D model
from a single RGB image are especially important to scale
up 3D modelling and make it more consumer-friendly com-
pared to traditional studio-based capture methods. How-
ever, this task presents substantial challenges due to the ex-
tensive variability in object shapes and appearances. These
challenges are further intensified by the inherent ambigui-
ties associated with monocular 2D views.

Moreover, beyond general object modeling, the gener-
ation of realistic clothed avatars presents a particularly
demanding set of challenges. This complexity arises from
the diversity of human body shapes and poses, which
is compounded by a wide array of clothing, accessories,
and occlusion by interacting objects. Such challenges are
accentuated by the relative scarcity of large-scale 3D human
datasets as compared to those available for objects, high-
lighting the critical need for advanced modeling techniques
that can effectively navigate these complexities.

Recent image-to-3D approaches can be categorized
into Direct-Reconstruction-based and Multi-View Diffusion-
based methods. Direct-Reconstruction-based approaches di-
rectly predict a 3D representation that can be rendered
from any viewpoint. Due to the explicit 3D representation,
these methods produce an arbitrary number of consistent
viewpoint renderings. For objects reconstruction, recent ap-
proaches such as LRM [1] and TriplaneGaussian [2] directly
predict the NeRF or 3D Gaussian Splats from the input con-
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text view. However, these non-generative models directly
regress the 3D representation in a deterministic manner,
which easily leads to blurry unseen regions in Fig. 2. For
clothed avatar reconstruction, recent popular approaches
obtain the 3D model based on common template [3], [4],
[5], [6] which utilize the SMPL [7] body model as the
shape prior and perform the clothed avatar reconstruction.
However, underlying SMPL body template highly limits the
3D representation of challenging human appearance, such
as large dress, occlusion by interacting objects, etc. Examples
can be found in Fig. 3. Furthermore, human reconstructors
are trained on relative small-scale datasets due to the lim-
ited amount of high-quality 3D human data, which further
restricts their ability to generalize to diverse shapes and
textures. Last but not least, all above mentioned image-
to-3D reconstruction works, regardless object-oriented or
human-oriented, are typically deterministic which produce
blurry textures and geometry in the occluded regions.

Multi-view diffusion-based methods [8], [9], [10] are
proposed to synthesize desired novel views from single
RGB image. These methods distill the inherent 3D structure
presented in pretrained 2D diffusion models [11]. Typically,
they fine-tune a large-scale 2D foundation model [11] on a
large 3D dataset of objects [12], [13], [14], to generate novel
views at given camera poses. Thanks to the pertaining on
large-scale image datasets, Multi-view diffusion methods
show strong generalization capability to unseen objects.
However, since these models diffuse images purely in 2D
without explicit 3D constraints or representation, the result-
ing multi-views often lack 3D consistency [15], [16]. The 3D
inconsistent multi-view images further restrict downstream
applications such as sparse-view 3D reconstruction [17].

https://yuxuan-xue.com/gen-3diffusion
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Single RGB images Extracted Meshes from generative 3D Gaussian Spatting reconstruction

Gen-3Diffusion

Fig. 1. Given a single image of a person or an object, our method Gen-3Diffusion creates realistic 3D objects or clothed avatars with high-fidelity
geometry and texture. We use Gaussian Splatting to flexibly represent various shapes which can be extracted to high-quality textured meshes.

To address these challenges, we propose Gen-
3Diffusion: Realistic Image-to-3D Generation via 2D & 3D
Diffusion Synergy. We design our method based on two
key insights: 1). 2D multi-view diffusion models (MVDs)
provide strong shape priors that help 3D reconstruction;
2). Explicit 3D representation produces guaranteed 3D con-
sistent multi-views that improve the accuracy of sampled
2D multi-view images. To leverage the benefits of both 2D
MVD and explicit 3D representation, we propose a novel
framework that synchronizes a 3D diffusion model with a
2D MVD model at each diffusion sampling step.

Specifically, we first introduce a novel 3D diffusion
model that directly regresses 3D Gaussian Splatting (3D-
GS [18]) from intermediately denoised multi-views images
of 2D MVD. The predicted 3D-GS can be rendered into
multi-view images with guaranteed 3D consistency. At ev-
ery iteration, 2D MVD denoises multi-view images condi-
tioned on input view, which are then reconstructed to 3D-
GS by our 3D diffusion model. The 3D-GS are then re-
rendered to multi-views to continue the diffusion sampling
process. This 3D lifting during iterative sampling improves
the 3D consistency of the generated 2D multi-view images
while leveraging a large-scale foundation model trained on
billions of images.

In summary, our contributions are:

• We propose a novel 3D-GS diffusion model for 3D
reconstruction, which bridges large-scale priors from
2D multi-view diffusion models and the efficient
explicit 3D-GS representation.

• A sophisticated joint diffusion process that incorpo-
rates reconstructed 3D-GS to improve the 3D consis-
tency of 2D diffusion models by refining the reverse
sampling trajectory.

• Our proposed formulation enables us to achieves
superior performance and generalization capability
than prior works, both in fileds of objects reconstruc-
tion (Gen3Dobject) and clothed human reconstruction
(Gen3Davatar). Our code and pretrained models will
be publicly released on our project page.

2 RELATED WORKS

2.1 Novel View Synthesis

Significant progress has been made in recent years in syn-
thesizing images at target camera poses given multi-view
observations. NeRF [20] and 3D Gaussian splitting (3D-
GS) [18] are two popular representations for novel view
synthesis. NeRF [20] uses neural networks to represent
the continuous radiance fields and obtains new images
via volumetric rendering. Despite impressive results, the
training and rendering speed is slow and lots of efforts [21],
[22] have been made to speed up NeRF. Alternatively, 3D-
GS [18] represents the radiance with a discrete set of 3D
Gaussians and renders them with rasterization which is
highly efficient.

Optimizing NeRF or 3D-GS is time-consuming and re-
quires dense multi-view images. Recently, Zero-1-to-3 [8]
proposes a novel idea in fine-tuning pretrained image dif-
fusion models [11] to generate the desired target views in a
zero-shot manner. Considering the power of the pretrained
StableDiffusion [11], Zero-1-to-3 has seen 5B 2D images
and 10M 3D objects, demonstrating superior generalization
ability in real-world images.

Despite the excellent generalization ability, zero-1-to-3
suffer from severe 3D inconsitency across different views
while generating multiple different views. The reason is that
the different views are sampled independently from each
other. To address the multi-view inconsistency in diffusion
sampling, multi-view diffusion models [9], [10], [23], [24] are
proposed to generate multiple views simultaneously with
information exchange across all sampled views using dense
pixel-level attention in the latent space. In our observation,
the dense multi-view attention improves the multi-view
consistency, but also limits the ability of free novel view
synthesis in Zero-1-to-3. Moreover, the generated multi-
view images still have no guarantee of 3D consistency due to
the lack of a common 3D representation during the diffusion
sampling process.

https://yuxuan-xue.com/gen-3diffusion
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Fig. 2. Motivation for generative 3D reconstruction design. Unlike
methods [1], [19] that deterministically regress 3D from single images,
our Gen-3Diffusion learns conditional distribution and samples a plausi-
ble 3D-GS, resulting in high-fidelity and realistic unseen regions.
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Fig. 3. Motivation for template-free avatar reconstruction design.
Methods [3], [5] relying on SMPL [7] template suffer from inaccurate
SMPL estimation and cannot represent challenging dresses or object
interaction. Our Gen-3Diffusion is template-free and leverages shape
prior from 2D diffusion models, can faithfully handle above challenges.

2.2 3D Objects from Image

Obtaining high-quality 3D objects from a single Image is an
attractive but challenging task. Early object reconstruction
works [25], [26], [27], [28], [29] focus mainly on geometry.
Recently, with the emergence of differentiable rendering
technologies, many works try to directly regress a 3D rep-
resentation such as NeRF [1], [30] or 3D-GS [2], [31] from
single RGB images. However, these methods are determin-
istic and do not learn the distribution of the underlying 3D
scene, which can result in blurry rendering results at the
inference time as in Fig. 2.

With the advance of 2D diffusion models [11] and effi-
cient 3D representation [32], recent works can reconstruct
3D objects with detailed textures [1], [2], [9], [16], [17], [23],
[33], [34], [35]. One popular paradigm is first using strong
2D models [8], [10], [36] to produce multi-view images and
then train another model to reconstruct 3D from multi-
view images [16], [17], [23], [37], [38]. In practice, their
performance is limited by the accuracy of the multi-view
images generated by 2D diffusion modes. Some works
have tried to train another network that learns to correct
the noisy multi-view images [16], [34], [37]. However, the
network can be overfitted to error patterns from specific
models, leading to limited generalization ability. Instead of
correcting the multi-views in the last step output which is
too late, we inject 3D consistency information early in the
sampling stage, resulting in more accurate multi-views and
3D reconstruction.

2.3 Clothed Avatar from Image

Creating realistic human avatar from consumer grade sen-
sors [39], [40], [41], [42], [43], [44] is essential for downstream
tasks such as human behaviour understanding [45], [46],
[47], [48], [49] and gaming application [50], [51], [52], [53],
[54]. Researchers have explored avatar creation from monoc-

ular RGB [55], [56], Depth [43], [57] video or single image [4],
[5], [19], [58], [59].

Avatar from single image is particularly interesting and
existing methods can be roughly categorized as template-
based [3], [4], [5], [6] and template-free [19], [58], [59], [60].
Template-free approaches [19], [58], [59], [60] directly predict
a human occupancy field conditioned on a single image.
This is flexible to represent diverse human clothing yet not
robust to challenging poses due to the lack of shape prior.
To leverage the shape prior information from human body
models [7], [61], template-based approaches first estimate
parametric body mesh from the image and then reconstruct
the clothed avatar. Despite the impressive performance,
these methods rely on the naked body model [7], [61] and
they are affected by the inaccurate body mesh estimation
which is common in extremely loose clothing or occlusion
introduced by interacting objects as shown in Fig. 3. In this
work, instead of using naked body models, we leverage
the shape prior from pre-trained image diffusion models.
This allows us to represent diverse clothed avatar shapes,
including large dress and interacting objects. Furthermore,
our method is not limited by the errors from monocular
body mesh estimation methods.

3 BACKGROUND

3.1 Denoising Diffusion Probabilistic Models

DDPM [62] is a generative model which learns a data
distribution by iteratively adding (forward process) and
removing (reverse process) the noise. Formally, the forward
process iteratively adds noise to a sample x0 drawn from a
distribution pdata(x):

xt ∼ N (xt;
√
αtxt−1, (1− αt)I) =

√
ᾱtx0 +

√
1− ᾱtϵ,

where ϵ ∼ N (0, I),
(1)
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where αt, ᾱt schedules the amount of noise added at each
step t [62]. To sample data from the learned distribution,
the reverse process starts from xT ∼ N (0, I) and iteratively
denoises it until t = 0:

xt−1 ∼ N (xt−1;µθ(xt, t), β̃t−1I),

where β̃t−1 =
1− ᾱt−1

1− ᾱt
(1− αt)

(2)

A network parametrized by θ is trained to estimate the
posterior mean µθ at each step t. One can also model condi-
tional distribution with DDPM by adding the condition to
the network input [63], [64].

3.2 2D Multi-View Diffusion Models

Many recent works [8], [9], [10], [23], [24], [65] propose to
leverage strong 2D image diffusion prior [11] pretrained on
billions images [66] to generate multi-view images from a
single image. Among them, ImageDream [10] demonstrated
a superior generalization capability to unseen objects [17].
Given a single context view image xc, ImageDream generate
4 orthogonal target views xtgt with a model ϵθ , which is
trained to estimate the noise added at each step t. With the
estimated noise ϵθ , one can compute the ”clear” target views
x̃

tgt
0 with close-form solution in Eq. (1):

x̃
tgt
0 =

1√
ᾱt

(x
tgt
t −

√
1− ᾱtϵθ(x

tgt
t ,xc, y, t)). (3)

This one-step estimation of x̃tgt
0 can be noisy and inaccurate,

especially when t is large and x
tgt
t is extremely noisy and

does not contain much information. Thus, the iterative
sampling of xtgt

t is required until t = 0. To sample next step
x

tgt
t−1, standard DDPM [62] computes the posterior mean µθ

from current xtgt
t and estimated x̃

tgt
0 at step t with:

µθ(x
tgt
t , t) := µt−1(x

tgt
t , x̃

tgt
0 )

=

√
αt (1− ᾱt−1)

1− ᾱt
x

tgt
t +

√
ᾱt−1βt

1− ᾱt
x̃

tgt
0 ,

where βt = 1− αt.

(4)

Afterwards, xtgt
t−1 can be sampled from Gaussian distribu-

tion with mean µt−1 and variance β̃t−1I (Eq. (2)) and used
as the input for the next iteration. The reverse sampling
is repeated until t = 0 where 4 clear target views are
generated.

Although multi-view diffusion models [9], [10], [24]
generate multiple views together, the 3D consistency across
these views is not guaranteed due to the lack of an explicit
3D representation. Thus, we propose a novel 3D consistent
diffusion model, which ensures the multi-view consistency
at each step of the reverse process by diffusing 2D images
using reconstructed 3D Gaussian Splats [18].

3.3 3D Diffusion with Differentiable Rendering

Although DDPM [62] has emerged as a powerful class of
generative models capable of capturing the distributions
of complex signals, it can only model distributions for
which training samples are directly accessible. Thus, directly
training DDPM to learn the distribution of NeRF or 3D-GS
requires pre-computing feature planes or Gaussians from

3D object scans, which is exorbitant. Recent works [67], [68],
[69] propose to learn the distribution of 3D representation by
diffusing the rendered images through differentiable render-
ing. In contrast to novel view diffusion models in Sec. 3.2,
these works directly learn image-conditional 3D radiance
field generation, instead of sampling from the distribution
of novel views conditioned on a context view.

Given a single context view image xc, Diffusion-with-
Forward (DwF) [68] generates Pixel-NeRF [30] from the
noisy view x̂

tgt
t and render to clear target view x̂

tgt
0 :

x̂
tgt
0 = renderer(NeRFϕ(x

tgt
t ,xc, t)). (5)

Similar to Eq. (3), the one-step estimation of x̂tgt
0 can be noisy

and inaccurate, especially when t is large. Thus, one can use
standard DDPM to sample x

tgt
t−1 using Eq. (2) and perform

the iterative denoising.
Inspired by Diffusion-with-Forward [68], we learn the

image-conditional 3D-GS generation in a diffusion-based
framework. In this scenario, 3D-GS is efficient and thus
more appropriate than NeRF for iterative sampling and
rendering. Our renderer(·) is the differentiable rasteraizer
implemented and accelerated by CUDA, which achieves
around 2700 times faster rendering than volume-rendering-
based renderer(·) in [68]. Moreover, our 3D-GS diffusion
model can be enhanced by the 2D multi-view priors from
2D diffusion models in Sec. 3.2. We describe this model in
more details in Sec. 4.1.

4 GEN-3DIFFUSION

Overview. Given a single RGB image, we aim to create a
realistic 3D model consistent with the input. We adopt an
image-conditioned 3D generation paradigm due to inherent
ambiguities in the monocular view. We introduce a novel
3D Gaussian Splatting (3D-GS [18]) diffusion model that
combines shape priors from 2D multi-view diffusion models
with the explicit 3D-GS representation. This allows us to
jointly train our 3D generative model and a 2D multi-view
diffusion model end-to-end and improves the 3D consis-
tency of 2D multi-view generation at inference time.

In this section, we first introduce our novel generative
3D-GS reconstruction model in Sec. 4.1. We then describe
how we leverage the 3D reconstruction to generate 3D con-
sistent multi-view results by refining the reverse sampling
trajectory (Sec. 4.3) of 2D diffusion model. An overview of
our 2D & 3D diffusion synergy can be found in Fig. 4.

4.1 3D-GS Diffusion Model

Given a context image xc, we use a conditional diffusion
model to learn and sample from a plausible 3D distribution.
Previous works demonstrated that 3D generation can be
done implicitly via diffusing rendered images of a differ-
entiable 3D represetation [67], [68], [69] such as NeRF [20],
[30].

In this work, we propose a 3D-GS diffusion model gϕ,
which is conditioned on input context image xc to perform
reconstruction of 3D Gaussian Splats G. Diffusing directly in
the space of G parameters requires pre-computing Gaussian
Splats from scans, which is exorbitant. Instead, we diffuse
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Fig. 4. Method Overview. Given a single RGB image (A), we sample a realistic 3D object represented as 3D Gaussian Splatting (D) from our learned
distribution. At each reverse step, our 3D generation model gϕ leverages 2D multi-view diffusion prior from ϵθ which provides a strong shape prior
but is not 3D consistent (B, Sec. 4.2). We then refine the 2D reverse sampling trajectory with generated 3D renderings that are guaranteed to be
3D consistent (C, Sec. 4.3). Our tight coupling ensures 3D consistency at each sampling step and obtains high-quality 3D Gaussian Splats.

the multi-view renderings of G using a differentiable ren-
dering function renderer(·) to learn the conditional 3D
distribution.

We denote x
tgt
0 as the ground truth images at target

views to be diffused and xnovel
0 as the additional novel views

for supervision. At training time, we uniformly sample a
timestep t ∼ U(0, T ) and add noise to x

tgt
0 using Eq. (1)

to obtain noisy target views x
tgt
t . Our generative model gϕ

takes xtgt
t , diffusion timestep t, and the conditional image xc

as input, and estimates 3D Gaussians Ĝ:

Ĝ = gϕ(x
tgt
t , t,xc),

where x
tgt
t =

√
ᾱtx

tgt
0 +

√
1− ᾱtϵ, and ϵ ∼ N (0, I)

(6)

We adopt an asymmetric U-Net Transformer proposed
by [17] for gϕ to directly predict 3D-GS parameters from
per-pixel features of the last U-Net layer. The context image
xc is attended onto the noisy image x

tgt
t using dense pixel-

wise attention. More specifically, the H × W × 14 feature
map is reshaped in H ∗ W × 14, where a total number
of H ∗ W 3D-GS are available, each has a center o ∈ R3,
a scaling factor s ∈ R3, a rotation quaternion q ∈ R4, an
opacity value α ∈ R1, and a color feature c ∈ R3. For more
implementation details regarding the asymmetric U-Net
Transformer, please refer to [17].

To supervise the generative model gϕ, we use a differ-
entiable rendering function renderer(·) : {G, πp} 7→ xp

to render images at target views πtgt and additional novel
views πnovel. Denoting x0 := {xtgt

0 ,xnovel
0 } as ground truth

and x̂0 := {x̂tgt
0 , x̂novel

0 } as rendered images, we compute the
loss on images and generated 3D-GS:

Lgs = λ1 · LMSE
(
x0, x̂0

)
+ λ2 · LPercep

(
x0, x̂0

)
+ λ3 · Lreg(gϕ(x

tgt
t , t,xc)),

where x̂0 := {x̂tgt
0 , x̂novel

0 }
= renderer(gϕ(x

tgt
t , t,xc), {πtgt, πnovel}),

(7)

here LMSE denotes the Mean Square Error (MSE) and LPercep
is the perceptual loss based on VGG-19 [70]. We also apply
Lreg, a geometry regularizer [71], [72] to stabilize the gener-
ation of Ĝ.

With this, we can train a generative model that diffuses
3D-GS implicitly by diffusing 2D images x

tgt
t . At inference

time, we can generate 3D-GS given the input image by
denoising 2D multi-views sampled from Gaussian distribu-
tion. We initialize x

tgt
T from N (0, I), and iteratively denoise

the rendered images of predicted Ĝ from our model gϕ. At
each reverse step, our model gϕ estimates a clean state Ĝ and
render target images x̂

tgt
0 . We then calculate target images

x
tgt
t−1 for the next step via Eq. (4) and repeat the process

until t = 0, obtaining clear images x̂tgt
0 and a clean 3D-GS Ĝ.

Our generative 3D-GS reconstruction model archives
superior performance on in-distribution reconstruction yet
generalizes poorly to unseen categories (Sec. 5.4 Fig. 10).
Our key insight for better generalization is leveraging strong
priors from pretrained 2D multi-view diffusion models for
3D-GS generation.
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Algorithm 1 Joint 2D & 3D Diffusion Training

Input: Dataset of posed multi-view images x
tgt
0 , πtgt, xnovel

0 ,
πnovel, a context image xc, text description y

Output: Optimized 2D multi-view diffusion model ϵθ and 3D-
GS generative model gϕ

1: repeat
2: {xtgt

0 ,xnovel
0 ,xc, y} ∼ q({xtgt

0 ,xnovel
0 ,xc, y})

3: t ∼ Uniform({1, . . . , T}); ϵ ∼ N (0, I)
4: x

tgt
t =

√
ᾱtx

tgt
0 +

√
1− ᾱtϵ

5: x̃
tgt
0 = 1√

ᾱt
(x

tgt
t −

√
1− ᾱtϵθ(x

tgt
t ,xc, y, t))

6: Ĝ = gϕ
(
x

tgt
t , t,xc, x̃

tgt
0

)
// Enhance conditional 3D gener-

ation with 2D diffusion prior x̃tgt
0 from ϵθ

7: {x̂tgt
0 , x̂novel

0 } = renderer
(
Ĝ, {πtgt, πnovel}

)
8: Compute loss Ltotal ( Eq. (9))
9: Gradient step to update ϵθ, gϕ

10: until converged

Algorithm 2 3D Consistent Guided Sampling

Input: A context image xc and text y; Converged 2D diffusion
model ϵθ and 3D generative model gϕ

Output: 3D Gaussian Splats G of the 2D image xc

1: x
tgt
T ∼ N (0, I)

2: for t = T, . . . , 1 do
3: x̃

tgt
0 = 1√

ᾱt
(x

tgt
t −

√
1− ᾱtϵθ(x

tgt
t ,xc, y, t))

4: Ĝ = gϕ
(
x

tgt
t , t,xc, x̃

tgt
0

)
5: x̂

tgt
0 = renderer

(
Ĝ, πtgt

)
6: µt−1(x

tgt
t , x̂

tgt
0 ) =

√
αt(1−ᾱt-1)

1−ᾱt
x

tgt
t +

√
ᾱt-1βt

1−ᾱt
x̂

tgt
0 // Guide 2D

sampling with 3D consistent multi-view renderings
7: x

tgt
t−1 ∼ N

(
x

tgt
t−1; µ̃t

(
x

tgt
t , x̂

tgt
0

)
, β̃t−1I)

)
8: end for

9: return G = gϕ
(
x

tgt
0 , x̃

tgt
0 ,xc, t = 0

)

4.2 3D Diffusion with 2D Multi-View Priors
Pretrained 2D multi-view diffusion models (MVD) [10], [24],
[36] have seen billions of real images [66] and millions of
3D data [12], which provide strong prior information and
can generalize to unseen objects [17], [34]. Here, we propose
a simple yet elegant idea for incorporating this multi-view
prior into our generative 3D-GS model gϕ. We can also lever-
age generated 3D-GS to guide 2D MVD sampling process
which we discuss in Sec. 4.3.
Our key observation is that both 2D MVD and our proposed
3D-GS generative model are diffusion-based and share the
same sampling state x

tgt
t at timestep t. Thus, they can be

tightly synchronized. This enables us to couple and facilitate
information exchange between 2D MVD ϵθ and 3D-GS gen-
erative model gϕ at the same diffusion timestep t. To inject
the 2D diffusion priors into 3D generation, we first compute
one-step estimation of x̃

tgt
0 (Eq. (3)) using 2D MVD ϵθ , and

condition our 3D-GS generative mode gϕ additionally on it.
Formally, our 3D-GS generative model enhanced with 2D
multi-view diffusion priors is written as:

Ĝ = gϕ(x
tgt
t , t,xc, x̃

tgt
0 ),

where x̃
tgt
0 =

1√
ᾱt

(x
tgt
t −

√
1− ᾱtϵθ(x

tgt
t ,xc, t)).

(8)

The visualization of x̃tgt
0 along the whole sampling trajec-

tory in Fig. 5 shows that the pretrained 2D diffusion model
ϵθ can already provide useful multi-view shape prior even
in large timestep t = 1000. This is further validated in our
experiments where the additional 2D diffusion prior x̃

tgt
0

leads to better 3D reconstruction (Tab. 7) as well as more
robust generalization to general objects (Fig. 10). By utilizing
the timewise iterative manner of 2D and 3D diffusion mod-
els, we can not only leverage 2D priors for 3D-GS generation
but also train both models jointly end to end, which we
discuss in Sec. 4.3.

4.3 Synergy between 2D & 3D Diffusion
Joint Diffusion Training We adopt pretrained Image-
Dream [10] as our 2D multi-view diffusion model ϵθ and
jointly train it with our 3D-GS generative model gϕ. We

observe that our joint training is important for coherent 3D
generation, as opposed to prior works that frozen pretrained
2D multi-view models [17], [33]. We summarize our train-
ing algorithm in Algorithm 1. We combine the loss of 2D
diffusion and our 3D-GS generation loss Lgs( Eq. (7)):

Ltotal = LMSE(ϵ, ϵθ) + Lgs (9)

Once trained, one can sample a plausible 3D-GS G condi-
tioned on the input image from the learned 3D distribu-
tions. However, we observe that the multi-view diffusion
model ϵθ can still output inconsistent multi-views along the
sampling trajectory (see Fig. 4). On the other hand, our 3D
generator produces explicit 3D-GS which can be rendered
as 3D consistent multi-views. Our second key idea is to use
the 3D consistent renderings to guide 2D sampling process
for more 3D consistent multi-view generation. We discuss
this next.

3D Consistent Guided Sampling With the shared and
synchronized sampling state x

tgt
t of 2D multi-view diffusion

model ϵθ and 3D-GS reconstruction model gϕ, we couple
both models at arbitrary t during training. Similarly, they
are also connected by both using estimated clean multi-
views xtgt

0 at sampling time. To leverage the full potential of
both models, we carefully design a joint sampling process
that utilizes the reconstructed 3D-GS Ĝ at each timestep
t to guide 2D multi-view sampling, which is summarized
in Algorithm 2.
We observe that the key difference between the clean multi-
views estimated x

tgt
0 from 2D diffusion model and our 3D-

GS generation lies in 3D consistency: 2D MVD computes
multi-view x̃

tgt
0 from 2D network prediction which can be

3D inconsistent while our x̂tgt
0 are rendered from explicit 3D-

GS representation which are guaranteed to be 3D consistent.
Our idea is to guide the 2D multi-view reverse sampling
process with our 3D consistent renderings x̂tgt

0 such that the
2D sampling trajectory is more 3D consistent. Specifically,
we leverage 3D consistent multi-view renderings x̂

tgt
0 to
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Fig. 5. Visualization of DDPM reverse sampling trajectory. At each individual step, estimated x̃tgt
0 can be 3D inconsistency across different views,

while the rendering x̂tgt
0 are 3D consistent and can refine the inconsistency along trajectory ( Eq. (10)).

refine the posterior mean µθ(x
tgt
t , t) at each reverse step:

Original: µθ(x
tgt
t , t) := µt−1(x

tgt
t , x̃

tgt
0 )

→ Ours: µθ(x
tgt
t , t) := µt−1(x

tgt
t , x̂

tgt
0 ),

where x̂
tgt
0 = renderer(Ĝ, πtgt),

µt−1(x
tgt
t , x̂

tgt
0 ) =

√
αt (1− ᾱt−1)

1− ᾱt
x

tgt
t +

√
ᾱt−1βt

1− ᾱt
x̂

tgt
0

(10)

With this refinement, we guarantee the 3D consistency
at each reverse step t and avoid 3D inconsistency accumu-
lation in original multi-view sampling [10]. In Fig. 5, we
visualize the evolution of originally generated multi-views
x̃

tgt
0 and multi-views rendering x̂

tgt
0 from generated 3D-GS

Ĝ along the whole reverse sampling process. It intuitively
shows how effective the sampling trajectory refinement
is. We perform extensive ablation in Sec. 5.4 showing the
importance of the consistent refinement for sampling trajec-
tory.

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of our
method for two image-based 3D reconstruction tasks: gen-
eral object reconstruction (denoted as Gen3Dobject, Sec. 5.2)
and clothed human avatar reconstruction (denoted as
Gen3Davatar, Sec. 5.3). We also ablate the influence of 2D and
3D diffusion models to our full pipeline in Sec. 5.4.

5.1 Experimental Setup
5.1.1 Datasets
General Object. We use a filtered high-quality Obja-
verse [12] subset introduced in LGM [17] which consists
of around 80K objects to train our Gen3Dobject model. We
evaluate our model on the Google Scanned Object dataset
(GSO) [73] according to the same evaluation protocol speci-
fied in EscherNet [74].
Clothed Avatar. We train our Gen3Davatar model on a com-
bined 3D human dataset [75], [76], [77], [78], [79], [80], [81],
[82], compromising ∼ 6000 high quality scans. We evaluate

our Gen3Davatar on around 450 subjects from three different
datasets: sizer [83], iiit [84], and cape [85].

5.1.2 Implementation Details
Network Architecture. Following [17], our 3D-GS genera-
tive model gϕ consists of 6 down blocks, 1 middle block, and
5 up blocks, with the input image at 256 × 256 and output
Gaussian feature map at 128 × 128. For each iteration, we
start from 4 Gaussian noisy images x

tgt
t and concatenating

their corresponding 2D prior images x̃
tgt
0 channel-wise, and

our gϕ generates in total 128 × 128 × 4 = 65536 number
of 3D-GS. For implementation details regarding the U-Net
model, please refer to [11], [17].
Training. We trained both our Gen3Dobject and Gen3Davatar
models on 8 NVIDIA A100 GPUs for approximately 5 days.
Each GPU was configured with a batch size 2 and gradient
accumulations of 16 steps to achieve an effective batch
size of 256. Each batch involved sampling 4 orthogonal
images with zero elevation angle as target views x

tgt
0 , and

12 additional images as novel views xnovel
0 to supervise

the 3D generative model Eq. (9). The hyperparameters for
training Eq. (9) were set as follows: λ1 = 1.0, λ2 = 1.0,
and λ3 = 100.0. During training, we employed the stan-
dard DDPM scheduler [62] to construct noisy target images
x

tgt
t . The maximum diffusion step T is set to 1000. The

AdamW [86] optimizer is adopted with the learning rate
of 5 × 10−4 , weight decay of 0.05, and betas of (0.9, 0.95).
The learning rate is cosine annealed to 0 during the training.
We clip the gradient with a maximum norm of 1.

Inference. Our whole pipeline, including joint sampling of
both 2D & 3D diffusion models, takes only about 11.7 GB
of GPU memory and 22.6 seconds for inference on NVIDIA
A100, which is friendly for deployment. For the adopted
pretrained multi-view diffusion model, we use a guidance
scale of 5 following [10]. At inference time, we use DDIM
scheduler [87] to perform faster reverse sampling. The total
reverse sampling steps are set to 50 in all experiments. We
use GOF [72] and TSDF [88] to extract the textured mesh
from the generated 3D Gaussian Splats.
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5.1.3 Evaluation Metrics

We evaluate the 3D reconstruction quality in terms of ap-
pearance and geometry. For appearance quality, we com-
pute metrics on directly generated images (novel view
synthesis methods) or renderings (direct 3D reconstruction
methods) at 32 novel camera views with uniform azimuth
and zero elevation angle. The metrics for appearance re-
ported include multi-scale Structure Similarity (SSIM) [89],
Learned Perceptual Image Patch Similarity (LPIPS) [90],
and Peak Signal to Noise Ratio (PSNR) between predicted
and ground-truth views. Moreover, we report the Fréchet
inception distance (FID) [91] between synthesized views
and ground truth renderings, which reflects the quality and
realism of the unseen regions.

For geometry quality, we compute Chamfer Distance
(CD), Point-to-Surface distance (P2S), F-score [92] (w/
threshold of 0.01m), and Normal Consistency (NC) be-
tween the extracted geometry and the groundtruth scan.
We normalize the extracted geometry into [−1, 1] and per-
form iterative closest point (ICP) to match the global pose
between extracted and groundtruth geometry to ensure
alignment, same as [3], [74]. In all experiments, we re-
evaluate the baseline models by using their officially open-
sourced checkpoints on the same set of reference views for
a fair comparison.

5.2 3D Object from Image

We evaluate Gen3Dobject for novel view synthesis and geom-
etry reconstruction on the GSO dataset [73]. We compare
our method against 2D novel view diffusion models Zero-1-
to-3 [8], Zero-1-to-3-XL [8], EscherNet [74], and SV3D [93],
as well as methods that directly reconstruct 3D models
such as LRM [1], TriplaneGaussian [2] and LGM [17]. Since
the code for LRM is not publicly available, we adopt the
implementation and pretrained model of OpenLRM [94]
and TripoSR [33] and compare with them. Notably, many
other 2D multi-view diffusion models [9], [10], [23] prioritize
3D generation rather than view synthesis. This limits their
methods to generate fixed target views rather than arbitrary
free-view synthesis, making them not directly comparable.

We report the quantitative evaluation results in Tab. 1
and show some comparisons in Fig. 6. Novel View Diffu-
sion models [8], [74], [93] achieve good appearance metrics
yet they cannot directly produce a 3D representation from
the images. Direct reconstruction approaches [2], [33], [94]
predicts 3D directly from images. However, the geometry
could be over-smooth (TriplaneGaussian [2]) or the texture
is not realistic (LGM [17]). Our Gen3Dobject diffuses 2D
images and 3D-GS jointly, which results in better and more
3D-consistent view synthesis and better 3D reconstruction.
Please refer to supplementary video for a more comprehen-
sive comparison.

5.3 Realistic Avatar from Image

We evaluate Gen3Davatar in novel view synthesis and the
geometry on the Sizer dataset [83], IIIT [84], and CAPE
dataset [85], [96], [97]. We compare our approach against
prior methods for image-to-avatar reconstruction, including

pure geometry-based [4], [5], [95] and textured geometry-
based [3], [6], [19] human reconstruction methods. To fur-
ther assess performance, we also fine-tuned the state-of-the-
art object reconstruction method LGM [17] and its under-
lying multi-view diffusion model [10] on our training data,
denoted as LGMft.

We report quantitative evaluation in Tab. 2 and Tab. 3
and show qualitative comparison for both appearance and
geometry via extracted mesh in Fig. 7. It can be seen that
template-based approaches heavily rely on accurate SMPL
estimations hence they easily fail when the estimations are
off. This is common when the person is wearing large dress,
has a different shape as the adult SMPL body shape or is in-
teracting with object/accessories. In contrast, our method is
template-free hence can flexibly represent all possible body
and clothing shapes, leading to more coherent appearance
and geometry reconstruction.

To further evaluate the reconstruction quality, we con-
duct a user study to compare the reconstruction of different
methods. We render 20 subjects with texture to compare
ours against SiTH and SIFU and another 20 subjects with
only geometry to compare ours against ICON and ECON.
The subjects are randomly sampled from evaluation dataset
of Sizer [83], IIIT [84], CAPE [85]. We release the user study
to 70 people from different technical backgrounds. Overall,
our results are preffered by 80.3% of users. It clearly shows
that our Gen3Davatar significantly outperforms baselines in
both geometry and appearance. Please see Fig. 8 for visual-
ization of the user study results.

Our method is a diffusion-based feed-forward approach
without any SMPL estimation or test-time optimization
process as is typical in template-based methods [3], [4], [5],
[6]. This allows us to obtain 3D reconstruction at higher
inference speed. We report the runtime comparison (on
Nvidia A100) in Tab. 4. Our method is much faster than
baseline human reconstruction methods.

5.4 Ablation Studies
In this section, we elaborate our ablation studies which
validate our design choices. Note that here we focus on our
human model Gen3Davatar and report results on the human
datasets as well as generalization to o.o.d unseen objects.

3D Diffusion helps 2D Diffusion. One of our key ideas
is leveraging our explicit 3D model to refine the 2D multi-
view reverse sampling trajectory, ensuring 3D consistency
in 2D Multi-View Diffusion (MVD) generation (see Sec. 4.3
and Eq. (10)). To evaluate this, we compare the multi-
view images (4 orthogonal views) generated by pretrained
MVD [10], fine-tuned MVD on our human data (MVDft) and
MVD with our 3D consistent sampling (ours), as shown in
Tab. 8. The results demonstrate that our proposed method
effectively enhances the quality of generated multi-view im-
ages by leveraging the explicit 3D model to refine sampling
trajectory.

Additionally. we analyze the 3D reconstruction results
with the multi-view images generated by these models in
Fig. 9. MVD and MVDft produce inconsistent multi-view
images, which typically lead to floating Gaussian and hence
blurry boundaries. In contrast, our method can generate
more consistent multi-views, result in better 3D Gaussians
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Fig. 6. Novel view synthesis visualisation of 3D objects from images. Our Gen3Dobject is able to directly generate 3D-GS and render to arbitrary
desired novel multi-views, which are more detailed and faithful w.r.t. the context image, and more 3D-consistent compared to prior works.

TABLE 1
Comparing object reconstruction methods on GSO dataset [73]. Our method achieves a better appearance and higher-quality 3D geometry.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ CD(cm) ↓ P2S(cm) ↓ NC ↑ F-score ↑
Zero-1-to-3 [8] 20.158 0.876 0.109 67.87 − − −
Zero-1-to-3-XL [8] 20.324 0.884 0.107 65.14 − − − −
EscherNet [74] 20.503 0.895 0.107 65.75 − − − −
SV3D [93] 20.975 0.900 0.105 64.72 − − − −
OpenLRM [94] 18.972 0.880 0.133 143.29 9.17 9.37 0.663 0.112
TripoSR [33] 19.820 0.898 0.110 73.26 6.23 6.49 0.734 0.178
TriplaneGaussian [2] 18.067 0.893 0.132 149.92 10.83 14.18 0.601 0.081
LGM 19.089 0.885 0.122 64.16 9.88 12.32 0.579 0.146
Gen3Dobject 22.881 0.917 0.078 54.12 4.12 4.00 0.734 0.293

Splats and sharper renderings. We further quantitatively
evaluate the impact of our proposed sampling trajectory
refinement on final 3D reconstruction in Tab. 6. We compare
the reconstruction results of methods with and without our
trajectory refinement while using the same 2D MVD and 3D
reconstruction models with same setting in Tab. 3 and Tab. 2.

It can be clearly seen that our trajectory refinement improves
the quality of 3D reconstruction.

2D Diffusion helps 3D Diffusion. Another key idea of
our work is the use of multi-view priors x̃

tgt
0 from 2D

diffusion model pretrained on massive data [11], [12], [66]
to enhance our 3D generative model. This additional prior
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Fig. 7. Appearance and geometry comparison of human avatar creation methods. We show novel view renderings of the textured avatar and
extracted mesh in row 2-4 and row 5-7 respectively. Prior methods produce blurry textures (SiTH [3], SiFU [6]) or oversmoothed surface (ECON [5],
ICON [4]) on unseen backside regions. The reliance on SMPL estimation is susceptible to errors (shown in row 8) and makes them difficult to model
loose clothing or diverse human shapes. In contrast, our method adopts template-free 3D-GS representation, and leverages strong prior from 2D
MVD models, allowing us to faithfully reconstruct high-fidelity geometry and appearance from single RGB image.

information is pivotal for ensuring accurate reconstruction
of both in-distribution human dataset and generalizing to
out-of-distribution objects.

We evaluate the performance of our 3D model gϕ by
comparing generation results with and without the 2D
diffusion prior x̃tgt

0 (refer to Eq. (8) and Eq. (6)). For avatars
reconstruction, our powerful 3D reconstruction model can
already achieve state-of-the-art performance. Moreover, our
Gen3Davatar full model with multi-view prior x̃

tgt
0 generates

avatars with higher quality as demonstrated in Tab. 7. We
further evaluate it on the GSO [73] dataset which consists

of unseen general objects to our Gen3Davatar model. The im-
provements are even more pronounced in this setting, high-
lighting the challenges of generating coherent 3D structures
from a single 2D image, particularly with unseen objects.
These ablation studies effectively proves that the 2D multi-
view diffusion prior enhances generalization capability.

6 OVERVIEW

6.1 Limitations
Limited by low resolution (256 × 256) of our adopted pre-
trained 2D diffusion model [10], our model cannot recover
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TABLE 2
Geometry evaluation for clothed avatars reconstruction on Sizer, IIIT, and CAPE dataset. Our method produces better 3D geometry in all

datasets.

Sizer Dataset [83] IIIT Dataset [84] CAPE Dataset [84]
Method CD(cm) ↓ P2S(cm) ↓ F-score ↑ NC ↑ CD(cm) ↓ P2S(cm) ↓ F-score ↑ NC ↑ CD(cm) ↓ P2S(cm) ↓ F-score ↑ NC ↑
SMPL [7] 3.94 4.02 0.237 0.743 4.67 4.33 0.204 0.728 5.04 4.91 0.213 0.743
PiFU [19] 2.35 2.31 0.410 0.782 2.70 2.64 0.337 0.764 3.40 3.27 0.314 0.791
FoF [95] 5.37 5.26 0.204 0.676 5.34 5.29 0.188 0.691 5.65 5.52 0.146 0.689
ICON [4] 3.01 3.20 0.285 0.771 4.55 4.53 0.202 0.716 4.28 4.28 0.238 0.762
ECON [5] 2.83 3.04 0.329 0.781 3.86 3.84 0.253 0.744 3.96 4.14 0.286 0.775
SiTH [3] 3.38 3.45 0.285 0.753 4.90 4.83 0.208 0.716 3.76 3.95 0.279 0.785
SiFU [6] 2.69 2.81 0.324 0.778 4.25 4.18 0.216 0.725 3.73 3.71 0.270 0.779
LGMft [17] 2.80 3.27 0.306 0.556 3.76 4.31 0.245 0.567 3.96 4.23 0.258 0.557
Gen3Davatar 1.06 1.05 0.627 0.794 1.44 1.39 0.531 0.781 1.89 1.84 0.491 0.801

TABLE 3
Appearance evaluation for clothed avatars reconstruction on Sizer, IIIT, and CAPE dataset. Our method produces overall better appearance.

Sizer Dataset [83] IIIT Dataset [84] CAPE Dataset [84]
Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
PiFU [19] 19.22 0.913 0.068 33.50 22.40 0.905 0.083 22.41 22.03 0.910 0.082 38.79
SiTH [3] 18.90 0.912 0.063 21.87 19.53 0.901 0.078 19.90 22.20 0.908 0.082 28.46
SiFU [6] 18.01 0.899 0.072 36.64 22.65 0.899 0.087 46.76 22.23 0.906 0.085 43.63
LGMft [17] 20.57 0.902 0.077 16.75 20.65 0.879 0.100 15.54 20.46 0.898 0.089 20.33
Gen3Davatar 21.28 0.928 0.047 10.01 22.13 0.905 0.066 9.69 21.46 0.912 0.064 16.40

TABLE 4
Runtime performance comparison. Our method is faster

than template-based human reconstruction methods.

Time (s) VRAM (GB)
ICON [4] 60.5 6.3
ECON [5] 45.3 5.9
SiFU [6] 48.9 12.0
SiTH [3] 106.2 22.0
Gen3Davatar 22.6 11.7 Pure Geometry Appearance & Geometry

Fig. 8. Runtime performance & user preference comparison. Left: Inference time and GPU consumption of SoTA avatar reconstruction
approaches. Right: User study statistics of avatar reconstruction on pure geometry or appearance & geometry comparison. Our method is preferred
by most people in both geometry and appearance.

Input Ours MVD MVDft

Fig. 9. 3D reconstruction conditioned on different multi-view priors. Without our 3D-consistent sampling, the 2D diffusion model cannot
generate 3D consistent multi-views (MVD, MVDft), leading to artifacts like floating 3D Gaussians splats. Our method obtains more consistent multi-
views hence better 3D-GS and rendering.

TABLE 5
Ablation of 2D multi-view priors in o.o.d. generalization.

Method LPIPS↓ SSIM↑ PSNR↑ FID↓
Ours w/o x̃

tgt
0 0.189 0.721 14.45 107.14

Ours 0.194 0.778 16.12 83.89 Input Ours pure 3D generative w/o 2D prior

Fig. 10. Ablation of 2D multi-view priors for object reconstruction. The model is trained for human reconstruction. It can be seen in the left table
that our 2D MVD model improves the generalization ability to unseen objects, leading to more plausible object shape as shown on the right image.
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TABLE 6
Ablating the influence of 3D consistent guided sampling for 3D-GS generation. Our proposed sampling strategy improves the 3D

reconstruction quality by enhancing multi-view consistency of 2D diffusion models.

Method CD(cm)↓ F-score↑ NC ↑ LPIPS↓ SSIM↑ PSNR↑
Our w/o Traj. Ref. 1.57 0.498 0.794 0.064 0.908 21.09
Ours 1.35 0.550 0.798 0.060 0.918 21.49

TABLE 7
Ablating the influence of 2D multi-view priors x̃tgt

0 . The strong prior from 2D diffusion models enhance the 3D reconstruction quality.

Method CD(cm)↓ F-score↑ NC ↑ LPIPS↓ SSIM↑ PSNR↑
Ours w/o x̃

tgt
0 1.75 0.498 0.795 0.068 0.912 20.98

Ours 1.35 0.550 0.798 0.060 0.918 21.49

TABLE 8
Ablating the influence of 3D consistent guided sampling for 2D

multi-view images generation. Our proposed sampling strategy
improves the multi-view image quality from 2D diffusion models.

Method PSNR ↑ LPIPS ↓ SSIM ↑
MVD 22.32 0.078 0.911
MVDft 24.14 0.061 0.926
Ours 24.69 0.048 0.934

fine details such as text on the objects. A potential solution
is to use a recent powerful high-resolution multi-view dif-
fusion models [65], [98], which provide strong shape priors
in higher resolution.

6.2 Future Works

Our Gen-3Diffusion is a general framework for image-to-
3D reconstruction, which shows the superior reconstruction
ability on isolated objects and human subjects. Extending
the current framework to scene-level reconstruction yields
more difficulties such as different camera poses and z-
buffering. Moreover, reconstructing 4D Gaussian Splatting
from single RGB videos is attractive but challenging due
to more monocular ambiguities. We leave these to future
works.

6.3 Conclusion

In this paper, we introduce Gen-3Diffusion, a 3D consistent
diffusion model for creating realistic 3D objects or clothed
avatars from single RGB images. Our key ideas are two
folds: 1) Leveraging strong multi-view priors from pre-
trained 2D diffusion models to generate 3D Gaussian Splats,
and 2) Using the reconstructed explicit 3D Gaussian Splats
to refine the sampling trajectory of the 2D diffusion model
which enhances 3D consistency. We carefully designed a
diffusion process that synergistically combines the strengths
of both 2D and 3D models. We compare our image-to-3D
model Gen3Dobject with 8 state-of-the-art methods and our
image-to-avatar model Gen3Davatar with 6 popular works,
show that our approach outperforms them in both appear-
ance and geometry. We also extensively ablate our method
which proves the effectiveness of our proposed ideas. Our
code and pretrained models will be publicly available on
our project page.

33 45

ReconstructionInput

Fig. 11. Gallery of 3D reconstruction from single RGB images using our
Gen3Davatar and Gen3Dobject.
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