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Fig. 1. Using text description, explicit body shape, cloth image as input, our 3D human generative method, InfiniHuman, can automatically create a variety of
realistic 3D humans with high-fidelity texture and geometry. Our InfiniHuman allows for generating infinite 3D humans with precise user control.

Generating realistic and controllable 3D human avatars is a long-standing
challenge. The difficulty increases when covering a broad range of attributes
such as ethnicity, age, clothing styles, and detailed body shapes. Capturing
and annotating large-scale human datasets for training generative models is
prohibitively expensive and limited in both scale and diversity. The central
question we address in this paper is: Can we distill existing foundation models
to generate theoretically unbounded richly annotated 3D human data? We
introduce InfiniHuman, a novel framework to distill these models syner-
gistically, to generate richly annotated human data with minimal cost and
theoretically unlimited scalability. Specifically, we propose InfiniHuman-
Data, a fully automatic pipeline that leverages vision-language and image
generation models to create a large-scale multi-modal dataset. Remarkably,
users cannot distinguish our automatically generated identities from scan
renderings. InfiniHumanData contains 111K identities and covers unprece-
dented diversity in ethnicity, age, clothing styles, and more. Each identity is
annotated with multi-granularity text descriptions, multi-view RGB images,
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detailed clothing images, and SMPL body shape parameters. Based on this,
we learn InfiniHumanGen, a diffusion-based generative pipeline condi-
tioned on text, body shape, and clothing assets. InfiniHumanGen enables fast,
realistic, and precisely controllable avatar generation. Extensive experiments
demonstrate that InfiniHuman significantly surpasses existing state-of-the-
art methods in terms of visual quality, generation speed, and controllability.
Importantly, our approach democratizes high-quality avatar generation with
fine-grained control at infinite scale through a practical and affordable so-
lution. To facilitate future research, we will publicly release our automatic
data generation pipeline and the comprehensive dataset InfiniHuman-
Data, and the generative models InfiniHumanGen. The code and data of
InfiniHuman is publicly available at https://yuxuan-xue.com/infini-human.

CCS Concepts: • Computing methodologies→ Appearance and texture
representations; Shape Inference; Machine learning approaches.
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1 Introduction
Creating realistic and controllable 3D human avatars is a funda-
mental problem of growing significance in virtual reality, digital
fashion, gaming, and social telepresence. Applications increasingly
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1. “Female, late 60s, Asian, light-medium skin, short 
gray hair, vibrant turquoise cheongsam, black flats, 
petite, serene expression.”

…

5. “Older Asian woman, gray hair, turquoise 
cheongsam, black flats.”
…

10. “Old Asian, gray hair.”

a) Automatically generated diverse identities b)  Multi-modal annotation for each subject

I) Multi-view Body & Head Images

II) SMPL III) Clothing IV) Multi-Granularity Caption

Fig. 2. Examples from InfiniHumanData. a) Diverse human identities covering a wide range of ethnicities, age groups (including children), clothing styles,
hair types, and skin tones, which are visually indistinguishable from real scans rendering (Sec. 4.2). b) Multi-modal annotations per each subject, including I)
multi-view RGB images (full-body and head), II) SMPL parameters, III) clothing asset images, and IV) multi-granularity text descriptions.

demand photorealistic avatars that can be personalized to match
textual descriptions, specific body shapes, and user-provided cloth-
ing. However, the limitations of existing generation techniques have
become increasingly apparent. In particular, generating diverse and
semantically rich 3D humans, varying in clothing, ethnicity, age,
gender, and shape, remains difficult due to the high cost and limited
diversity of manually captured datasets.
Recent training-free approaches such as Score Distillation Sam-

pling (SDS) [Poole et al. 2023] have leveraged powerful text-to-image
diffusion models to bypass dataset acquisition. However, these meth-
ods suffer from long optimization times, limited visual fidelity, and
a lack of precise control over attributes like garment appearance or
detailed body shape. These limitations motivate a critical research
question: Can we distill the capabilities of foundation models to gen-
erate richly annotated 3D human data at theoretically unlimited scale
and with precise controllability?
We propose InfiniHuman, a fully automated framework that

addresses this question by systematically repurposing and integrat-
ing existing vision-language, image synthesis, pose estimation, and
diffusion models. Our method produces realistic 3D human identi-
ties at unprecedented scale, each annotated with multi-view images,
fine-grained textual descriptions, SMPL parameters, and explicit
clothing representations. The resulting dataset, InfiniHumanData,
contains over 111K identities and supports detailed control across
age, ethnicity, clothing, and body morphology.

Built upon this dataset, we introduce InfiniHumanGen, a pair of
generative models capable of synthesizing 3D avatars conditioned
jointly on text, clothing image and body shape, giving the user pow-
erful controls. It includes two complementary models:Gen-Schnell,

which enables rapid 3D generation and produces a Gaussian splat-
ting output, and Gen-HRes, which produces high-resolution, pho-
torealistic textured meshes. Our models outperform prior works on
visual quality, speed, and attribute controllability, achieving state-
of-the-art results with significantly lower computational cost.

In summary, the main technical contributions of our work include:
• InfiniHuman, a framework to generate virtually unlimited
richly annotated data of humans by distilling existing founda-
tion models. The framework is fully automatic and generates
identities indistinguishable from real scans.

• InfiniHumanData, the first large-scale multi-modal human
dataset comprising 111K diverse identities with rich multi-
modal annotations essential for precise avatar generation.

• InfiniHumanGen, a novel generative framework supporting
two distinct models: Gen-Schnell for fast and interactive 3D
human generation and Gen-HRes for high-resolution and
visually detailed 3D human creation; both from various user-
specified inputs such as text, clothing, or body shape.

By removing the need for costly scans, our method democratizes
high-quality avatar creation, empowering applications in fashion,
gaming, AR/VR, and beyond.

2 Related work

2.1 3D Human Generation.
The creation of 3D human avatars from user-defined conditions is
a long-standing problem in vision and graphics, with most prior
works falling into two categories: reconstruction from images [Liao
et al. 2025; Saito et al. 2019; Xiu et al. 2023, 2022; Zheng et al. 2021],
and generation from text [Cao et al. 2023; Han et al. 2023a; Hong
et al. 2022; Kim et al. 2022; Kolotouros et al. 2023; Liao et al. 2023;
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Table 1. Comparison of related datasets. Most existing human datasets
are limited at scale and none of them provide detailed identity annotation
like fine-grained text and clothing image.

Type Dataset IDs Multi-Text Cloth Assets

3D
Sc
an
s CustomHuman [Ho et al. 2023] 80 ✘ ✘

Sizer [Tiwari et al. 2020] 97 ✘ ✘

2K2K [Han et al. 2023b] 2050 ✘ ✘

THuman2.1 [Yu et al. 2021] 2500 ✘ ✘

M
ul
ti-
vi
ew

Im
ag
es ActorsHQ [Isik et al. 2023] 8 ✘ ✘

ZJU-MoCap [Peng et al. 2021] 10 ✘ ✘

DNA-Rendering [Cheng et al. 2023] 500 ✘ ✘

HUMBI [Yu et al. 2020] 772 ✘ ✘

HuMMan [Cai et al. 2022] 1000 ✘ ✘

MVHumanNet [Xiong et al. 2024] 4500 ✘ ✘

IDOL [Zhuang et al. 2025] 100K ✘ ✘

Ours InfiniHumanData 111K ✔ ✔

Liu et al. 2024; Wang et al. 2024; Yuan et al. 2024; Zhang et al. 2023].
Recent methods have also explored learning avatars from large-scale
2D image collections [Dong et al. 2023; Hong et al. 2023; Xiu et al.
2024].
A key limitation in existing works is controllability: prior ap-

proaches support conditioning on either text or body shape, but
none allow direct, explicit control over detailed clothing items in ad-
dition to text and shape. This restricts their application in domains
requiring personalized appearance, such as digital fashion or virtual
fitting rooms. We fill this gap by introducing a scalable and fully
automatic data generation pipeline that enables the training of gen-
erative models conditioned on text, SMPL body shape, and specific
clothing images. Our models achieve high-quality 3D human syn-
thesis consistent with all these modalities, offering unprecedented
fine-grained control and realism.

2.2 Large-Scale 3D Datasets.
The availability of high-quality, large-scale 3D datasets is a key
driver of progress in generative 3D modeling. While object-centric
datasets like Objaverse [Deitke et al. 2023] and ShapeNet [Chang
et al. 2015] have enabled remarkable advances for general object
synthesis and reconstruction, 3D human datasets pose unique chal-
lenges. Commercial human scan repositories such as RenderPeople,
Twindom, and Axyz provide highly realistic scans, but are expen-
sive (often ∼100 USD per identity). Publicly available 3D human
datasets (Tab. 1) are often constrained by participant recruitment,
scanning logistics, and privacy considerations, resulting in limited
scale, demographic diversity, and coverage of clothing, age, and
body morphology.

Some alternatives use multi-view image capture to reduce costs,
but these datasets are typically restricted to fixed camera view-
points and controlled lighting, limiting their generalizability and
value for generative tasks. Recent innovations, such as the IDOL
dataset [Zhuang et al. 2025], leverage video diffusion models to syn-
thesize 360-degree images from a single 2D input. However, video
diffusion often introduces view inconsistencies and lacks true 3D ge-
ometry (see Supp. Mat.), due to neighbor-only attentionmechanisms
and the absence of explicit 3D supervision.

Critically, existing datasets rarely provide fine-grained annota-
tions of identity level that are essential for training generative mod-
els capable of precise control over appearance attributes. Our In-
finiHumanData addresses all these limitations by using multi-
modal foundation models to generate a large-scale, richly annotated
dataset, covering unprecedented diversity across age, ethnicity, body
shape, and clothing style, and providing annotations that support
high-fidelity, controllable 3D human generation. To accelerate re-
search and enable further expansion, we publicly release our fully
automatic data generation pipeline and dataset, empowering the
community to create virtually unlimited, realistic human identities.

3 Method
Our objective is to generate highly realistic 3D avatars that allow
precise and flexible control based on multiple user-specified con-
ditions. These conditions include (i) natural language descriptions
to define the subject’s appearance, (ii) SMPL parameters to govern
body shape and pose, and (iii) reference images to specify clothing
style. To enable such fine-grained generation, we must model the
joint conditional distribution 𝑃 (𝒚 |𝒄text, 𝒄SMPL, 𝒄cloth), where y repre-
sents the generated avatars, and c terms represent the conditioning
signals specified by users.
This task requires a large, diverse, and richly annotated dataset

of 3D human avatars, which is costly and impractical to collect
and annotate manually. Instead, we present InfiniHuman, a fully
automated framework that synthesizes such a dataset by distilling
existing foundation models across multiple domains. We first detail
the construction of our dataset, InfiniHumanData, in Sec.3.1, and
then describe our controllable generative models, InfiniHuman-
Gen, in Sec.3.2.

3.1 InfiniHumanData - Generation by Reconstruction
To enable highly controllable 3D avatar generation, we first con-
struct a large-scale, richly annotated dataset, InfiniHumanData.
Our data generator produces multi-modal outputs for each identity,
including structured text descriptions, clothing style images, SMPL
body shape and keypoints, and orthographic multi-view images
with controlled lighting suitable for 3D lifting (see Fig. 3 for visual-
ization and detailed breakdown). In the following, we describe the
major components of our data generation pipeline.

A) Multi-Granularity Text Description. To encode diverse se-
mantic concepts, we design a captioning system that generates both
detailed and progressively abstracted descriptions. We first caption
existing human scan datasets [Han et al. 2023b; Ho et al. 2023; Yu
et al. 2021] using the protocol from Trellis [Xiang et al. 2024]. Next,
we randomly sample ten captions and provide them as in-context
examples to GPT-4o, prompting it to generate new variations. These
generated captions maintain similar lengths and formats, while
diversifying attributes such as ethnicity, age group, and clothing
style. Each caption is then summarized into ten levels of granularity,
ranging from 40 words to 5 words. This hierarchical annotation
enriches training by exposing models to both coarse (e.g., old) and
fine-grained (e.g., late sixties to early seventies) semantic cues.
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Monocular Body Fitting: 
Shape estimation 
and Refinement

Orthographic MVD
High-resolution

multi-view Hallucination

Text-to-Desired-Image: 
Orthographic “scan-like” 

image generation

Virtual-Tryoff: 
Clothing asset images 

generation

GPT-4o: 
Plausible clothing asset 

image selection

GPT-4o: 
Human description generation & 
Multi-granularity reformatting

“ Brown-haired man with trimmed beard strides 
forward, late 20s to early 30s, smiling, in grey 
sweater, blue scarf, black jeans and cream trainers . ”

1. “Bearded young man smiles, grey jumper, light 
blue scarf, black trousers, beige shoes”
…
5. “Grey-sweatered man, 20 to 30, blue scarf, 
black jeans.”
…
10. “Young man, blue scarf.”

OpenPose 2D  joints

2D Joints projected 
from SMPL

NLF Estimated 
SMPL High-Resolution Multiview Body and Head ImagesVToFF CandidatesClothing

(Sec. 3.1, A)

(Sec. 3.1, C)

(Sec. 3.1, B)

(Sec. 3.1, E) (Sec. 3.1, F)

(Sec. 3.1, D)

🚩

🚩

🚩
🚩

Fig. 3. Overview of data generation framework in InfiniHumanData. The process is fully automated by leveraging foundation models. Desired outputs
are marked with flags: A) Structured text descriptions, C) Clothing style images, E) Body shape in SMPL format plus face and hand keypoints, F) Orthographic
multi-view images with controlled lighting conditions suitable for 3D lifting.

B) Orthographic Text-to-Image. Most text-to-image models (e.g.,
FLUX) produce images with dramatic perspective and complex light-
ing, which are suboptimal for 3D reconstruction tasks. To address
this, we fine-tune FLUX with a LoRA adapter [Hu et al. 2022] on
orthographic renderings of a few thousand scans under uniform
lighting, enabling generation of “scan-like” images (see Fig. 3). This
stylization step ensures compatibility with downstream 3D lift-
ing processes. In particular, orthographic views are essential for
our multi-view diffusion, which relies on simplified epipolar at-
tention [Li et al. 2024a]. Importantly, this approach preserves the
inherent diversity of FLUX while aligning the image domain for
reconstruction. A challenging discriminative user study (Sec. 4.2)
further demonstrates that our generated identities achieve visual
realism on par with scan renderings.
C) Virtual-TryOff for Clothing Control. Because a single im-

age can convey garment appearance more precisely than any text
description, we provide direct clothing control by reversing the
try-on process. Given a full-body image, we fine-tune OminiCon-
trol [Tan et al. 2024] to extract a clean garment image via text-
based image-to-image translation. This task, termed Instruct-Virtual-
TryOff, is trained using garment-actor pairs from existing Virtual-
TryOn datasets [Choi et al. 2021; Morelli et al. 2022] and prompts
like "<Please extract {Garment} for this person>".

Each training instance consists of a garment image 𝐼 cloth, a corre-
sponding try-on image 𝐼vton, and a textual prompt 𝑒text. The model
parameters 𝜽 are optimized via the flow-matching objective:

LVToFF
(
𝜽
)
= E𝑡,𝜺




𝑣𝜽(x𝑡 , 𝐼vton, 𝑒text, 𝑡 ) − (
𝜺 − 𝐼 cloth

)


2
, (1)

where x𝑡 = (1 − 𝑡) 𝐼 cloth + 𝑡𝜺, 𝜺 ∼ N(0, I). (2)

Here, 𝑣𝜽 denotes the network, x𝑡 is a noisy version of the garment
image, and 𝑒text provides the instruction (see Fig. 3). The network
learns to synthesize clean garment images conditioned on full-body
images and textual instructions. This enables users to specify cloth-
ing via image, without requiring paired image-scan training data.

D) Negative Samples Rejection. To remove occasionally wrongly
generated images, we use the sampling rejection strategy: first gen-
erate four garment images per subject and then employ GPT-4o to
select the best match based on considerations like color, texture,
length, and detailed features (e.g. zippers, pockets). The detailed
prompt for sampling rejection can be found in Supp. Mat.

E) Monocular Body Fitting for Shape and Pose Control. We use
NLF [Sárándi and Pons-Moll 2024] to regress SMPL parameters from
orthographic views by setting FoV to 0.1, followed by refinement
via OpenPose 2D joint alignment [Cao et al. 2019]. This two-step
process ensures that SMPL parameters align accurately with both
overall pose and pixel-level features (particularly at face), which is
crucial for consistent multi-view generation conditioned on SMPL.
More specifically, we optimize the SMPL body pose parameters w.r.t.
the reprojection error between the orthographically projected SMPL
joints and 2D joints estimated by OpenPose:

Lreproj
(
𝜽
)
=

𝐾∑︁
𝑘=1

𝑤𝑖𝑘




𝜋ortho(𝐽𝑘 (SMPL(𝜽𝒊, 𝜷))
)
− 𝐽

OpenPose
𝑘




2

2
(3)

We carefully tweak the per-joint weights and the regularization
to achieve the best pixel-level matching between 3D SMPL and
2D images. Please refer to Fig. 14 and supplementary material for
qualitative visual examples and ablation studies.

F) Orthographic MV-Diffusion. To produce high-resolution, con-
sistent multi-views, we train a diffusion model on orthographic

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.
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“White male, 70–80, fair skin, white wavy hair, 
thick mustache, neutral expression, dark brown 

suit, white dress shirt, black shoes.”
(Sec. 4.1.2)

Monocular Body Fitting: 
Shape estimation 
and Refinement

InfiniHuman-1-to-3: 
High-resolution

multiview Hallucination

Text-to-Desired-Image: 
Orthographic “scan-like” 

image generation

Virtual-Tryoff: 
Clothing asset images 

generation

GPT-4o: 
plausible clothing asset 

image selection

GPT-4o: 
human description generation & 
multi-granularity reformatting

“Fair-skinned white male, 70–80, white hair, brown 
suit, white shirt, black shoes.”

…
“Older white man, fair skin, brown suit, white shirt.”

…
“Older man, brown suit.”

OpenPose 2D  joints

2D Joints projected 
from SMPLNLF Estimated SMPL High-Resolution Multiview Body and Head ImagesVToff CandidatesCloth Image

(Sec. 4.1.1)

(Sec. 4.1.3)

(Sec. 4.1.4) (Sec. 4.2)

(Sec. 4.1.5)

a) Gen-Schnell b)  Gen-HRes

2D Diffusion 3D Diffusion

High-Resolution 
Image Generation

Multi-View 
Generation

Multi-View 
Mesh Carving

3D-Guided Sampling

Textured Mesh3D Gaussian SplatsGaussian Noise

(Eq. 7)

(Sec. 3.2, B)

(Sec. 3.2, A)(Eq. 6)

Low Resolution, High Resolution,

“Man in his 20s, mixed race, with short curly 
brown hair, medium skin tone, wearing a gray 

hoodie, black jeans, and brown boots. 
(optional: Head View / Full-Body View.)

Multi-Modal Precise Control Signal

Desired Appearance Description Desired Pose and Shape
Desired Cloth 

Image

Fig. 4. Overview of a) Gen-Schnell and b) Gen-HRes in InfiniHumanGen. Taking text description, explicit SMPL shape, and a cloth image as input,
Gen-Schnell generates 3D-GS end-to-end, while Gen-HRes generates high-resolution textured mesh, both matched to input conditions.

projections with uniform lighting. Orthographic views have hori-
zontal epipoles, enabling efficient row-wise attention across views.
Given an orthographic RGB image 𝐼 in ∈ R𝐻×𝑊 ×𝐶 , our multi-

view diffusion (MVD) model generates 𝑁 views of high-resolution
full-body images 𝐼body ∈ R𝑁×𝐻×𝑊 ×𝐶 and head images 𝐼head ∈
R𝑁×𝐻×𝑊 ×𝐶 from the front, left, right, and back directions. We pro-
vide geometric guidance by rendering SMPL normal maps 𝐼SMPL

and encoding them, together with the reference image, into the
latent space using a pretrained VAE from PSHuman [Li et al. 2024b].
For multi-view consistency, we apply orthographic multi-view at-
tention separately within the body and head views, where each row
of the each view attends to the same row of other views due to
the orthographic constraint across views. Please refer to Fig. 15 for
visual examples. For body-head consistency, we use dense pixel-
level cross-attention between corresponding body and head views,
where each pixel of body image attends to pixels of the head image
under the same view. The UNet denoiser 𝜖 (𝜽 ) is fine-tuned using
the following objective:

LMVD
(
𝜽
)
= E𝑡,𝜺

∑︁
𝑝∈{body,head}




𝜖𝜽(x𝑝𝑡 , 𝐼 in, 𝐼SMPL, 𝑡
)
− 𝜺




2
, (4)

where x𝑝𝑡 =
√
𝛼𝑡 𝐼

𝑝 +
√

1 − 𝛼𝑡 𝜺, 𝜺 ∼ N(0, I). (5)

Here, 𝛼𝑡 determines the noise level at each diffusion step 𝑡 . At in-
ference time, our multi-view diffusion model takes an orthographic
input image and SMPL normal maps as input, generating high-
resolution multi-view body and head images (see Fig. 3, right).

3.2 InfiniHumanGen - Generation with Precise Control
3.2.1 Joint Conditional Distribution. Leveraging InfiniHumanData,
which contains 111K diverse identities each annotated with multi-
granularity text captions 𝒄text, SMPL parameters 𝒄SMPL, correspond-
ing cloth images 𝒄cloth, and orthographic multi-view images 𝒚𝑚𝑣 ,

we learn a joint conditional distribution 𝑃 (𝒚 |𝒄text, 𝒄SMPL, 𝒄cloth) to
enable precise avatar generation. We train two complementary mod-
els to support both fast and high-fidelity generation:

A) Gen-Schnell: Fast End-to-End Generation. Gen-Schnell is a
low-latency model that directly generates 3D avatars as Gaussian
splats [Kerbl et al. 2023]. Inspired by Human-3Diffusion [Xue et al.
2024], we combine 2D multi-view generation (from MVDream [Shi
et al. 2024]) with a splatting decoder that enforces consistency across
views. To inject condition signals, we encode SMPL normal maps
𝒄SMPL and clothing images 𝒄cloth using the MVDream VAE, and
concatenate them channel-wise with the initial noise x𝑡 . The 2D
diffusion model 𝜖 (𝜽 ) predicts noise values, which are used to recon-
struct clean multi-view images x̃0:

x̃0 =
1

√
𝛼𝑡

(
x𝑡 −

√
1 − 𝛼𝑡𝜖𝜽

(
x𝑡 , ctext, cSMPL, ccloth, 𝑡

))
. (6)

While the resulting multi-view images x̃0 provide strong shape
priors, theymay exhibit inconsistencies across views. To address this,
our 3D-GS generator 𝑔(𝝓) takes the predicted multi-view images
x̃0 and initial noise x𝑡 to generate consistent 3D Gaussian splats
Ĝ0, which render consistent multi-view images x̂0. During each
sampling step from 𝑡 to 𝑡 − 1, we replace 2D predictions with 3D-GS
rendered images to ensure consistency:

𝜇𝑡−1 (x𝑡 , x̂0) =
√
𝛼𝑡

(
1 − 𝛼𝑡−1

)
1 − 𝛼𝑡

x𝑡 +
√
𝛼𝑡−1 𝛽𝑡
1 − 𝛼𝑡

x̂0,

x𝑡−1 ∼ N
(
x𝑡−1; 𝝁̃𝑡 (x𝑡 , x̂0) , 𝛽𝑡−1I

)
.

(7)

At the final timestep 𝑡 = 0, Ĝ0 is output as the final 3D-GS, see Fig. 4.
Gen-Schnell is highly efficient and produces 3D-GS in about 12
seconds. However, due to the low-resolution constraint of MVDream
(256×256), detailed features (e.g., facial textures, textual elements)
appear blurry, motivating our high-resolution generator, Gen-HRes.
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“White male, 70–80, fair skin, white wavy hair, 
thick mustache, neutral expression, dark brown 

suit, white dress shirt, black shoes.”
(Sec. 4.1.2)

Monocular Body Fitting: 
Shape estimation 
and Refinement

InfiniHuman-1-to-3: 
High-resolution

multiview Hallucination

Text-to-Desired-Image: 
Orthographic “scan-like” 

image generation
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B) Gen-HRes: High-Resolution Generation. For photorealistic
avatar generation from multiple conditions, Gen-HRes frames it
as a multi-image-to-image translation task, where we fine-tune
OminiControl2 [Tan et al. 2025] on InfiniHumanData. Using full-
body images y2D as target, we optimize the flow matching objective:

LHRes
(
𝜽
)
= E𝑡,𝜺




𝑣𝜽(x𝑡 , ctext, ccloth, cSMPL, 𝑡
)
−
(
𝜺 − y2D

)


2
, (8)

where x𝑡 = (1 − 𝑡) y2D + 𝑡𝜺, 𝜺 ∼ N(0, I) . (9)

Our data and model design ensure that the generated multi-view im-
ages are well aligned with the conditioning SMPL mesh. This align-
ment allows us to compute surface normals with Sapiens2B [Khi-
rodkar et al. 2024] and apply SMPL-driven volumetric carving via
PSHuman [Li et al. 2024b] for high-fidelity 3D mesh reconstruction.
Compared to Gen-Schnell, Gen-HRes not only achieves higher

resolution and visual fidelity, but also supports detailed text prompt-
ing. By fixing initial Gaussian noise, Gen-HRes can precisely control
fine-grained attributes, such as glasses or garment colors, through
detailed text descriptions, as shown in Fig. 5. Gen-HRes enables
high-fidelity avatar generation in approximately 4 minutes.

4 Experiments

4.1 Implementation Details
The orthographic multiview diffusion model used in InfiniHuman
and Gen-HRes is built upon the pre-trained text-to-image model
SD2.1-unclip. We concatenate the input image latents with noise
latents along the channel dimension. The noise latents are replicated
for each view, and the text embedding is repurposed to generate dis-
tinct head and body views, similar to PSHuman [Li et al. 2024b]. Our
model generates four orthogonal body views and four head views
from single orthographic input body image. For the orthographic
multiview diffusion models, we train on 8 H100 with effective batch
size of 128 for 2 days on orthographic uniform lighting rendering
of 6000 high-quality human scans from Twindom, CustomHuman,
and THuman2.1 [twi 2023; Ho et al. 2023; Yu et al. 2021]. We use
front-view renders with text labels to fine-tune Flux-Dev [Black
Forest Labs 2024] LoRA for the orthographic text-to-image task.

Table 2. Quantitative comparison results. We report user study results
for appearance quality and text alignment, where most participants prefer
our method. We also achieve SOTA in T2I metrics such as CLIP and FID.

Method Quality↑ Alignment↑ FID↓ CLIP Score↑ Runtime↓(User Study) (User Study)

MVDream 20.83% 20.36% 141.33 30.37 2.8s
SPAD 2.02% 1.55% 150.43 28.58 13.9s
Gen-Schnell 77.14% 78.10% 100.39 30.82 12.9s

TADA 1.27% 1.27% 129.68 28.84 213m
DreamAvatar 1.27% 1.90% 151.57 28.42 384m
HumanGaussian 2.22% 3.48% 140.24 30.56 40 m
HumanNorm 2.54% 3.48% 101.84 28.30 117 m
AvatarVerse 0.32% 0.32% 156.52 28.69 44 m
Gen-HRes 92.39% 89.56% 82.28 30.43 4 m

For constructing the InfiniHumanData, we use GPT-4o to enhance
correctness of automatic cloth labeling, where each subject takes
around $0.03. Based on InfiniHumanData, we train Gen-Schnell on
8 A100 GPUs with effective batch size 256 over approximately 2
days, and Gen-HRes on 2 H100 GPUs with effective batch size of
32 for 2 days. Please refer to Supp. Mat. for implementation details
on Gen-Schnell as well as Gen-HRes, and for prompting details on
constructing InfiniHumanData.

4.2 Evaluation Benchmark
We compare Gen-Schnell with feed-forward text-based multi-view
generation approaches such as MVDream [Shi et al. 2024] and
SPAD [Kant et al. 2024], which can generate multi-view images
from text prompt within a minute. We compare Gen-HRes with
SDS-based text-to-avatar approaches, e.g. DreamAvatar [Cao et al.
2024], AvatarVerse [Zhang et al. 2024], HumanGaussian [Liu et al.
2024], HumanNorm [Huang et al. 2024], and TADA [Liao et al.
2024]. These optimization-based methods achieve higher quality
than feed-forward approaches but typically require several hours
for generation. Therefore, we also compare with Chupa [Kim et al.
2023], a mesh-based avatar generator directly learned from 3D scans.
Furthermore, we evaluate the realism of generated identities in In-
finiHumanData.
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Fig. 7. Generate avatars with precise pose shape control and text-based editing. The identity is preserved during shape and text-based editing.

4.2.1 Qualitative Comparison. As depicted in Fig. 11, Gen-HRes
has various advantages over baselines: (1) multi-view consistency,
because Gen-HRes generates textured mesh as output, while SDS-
method optimizes per view given text prompt, which can lead to
the Janus problem. (2) enhanced realism, Gen-HRes does not suffer
from unnatural saturation, which is a typical problem in SDS-based
generation. (3) text-following ability, Gen-HRes leverages founda-
tional text-based generation capability from FLUX, which shows
stronger text-following ability than SDS-based methods, especially
in details such as color of garments. Gen-Schnell also shows better
text-following ability (e.g. head view, color) than previous works.
Please refer to Fig.3 and Fig.4 in Supp. Mat. for more comparison.

4.2.2 Quantitative Comparison. We conducted a user study to quan-
titatively compare with SOTA methods in text-based generation.
We asked 42 participants to evaluate videos rendered from gen-
erated 3D avatars generated by different methods and to vote for
the best methods based on overall appearance quality and align-
ment with text description. We also report quantitative numbers in
FID between generated results and rendered images from human

scans. Additionally, we use the CLIP Score to quantify the semantic
alignment between the text description and the renderings. Tab. 2
presents average scores across 32 prompts. The results of user stud-
ies, FID, and CLIP demonstrate that our Gen-Schnell and Gen-HRes
outperforms SOTA feed-forward text-to-3D and SDS-based text-to-
3D avatar methods, respectively. Our method achieves the highest
overall result quality and the most accurate alignment with the
prompt’s semantics. More importantly, our Gen-HRes can gener-
ate 3D avatars with at least 8 times less computational time than
high-resolution baselines, demonstrating that our InfiniHumanGen
is the most efficient high-resolution avatar generative model.

4.2.3 InfiniHumanData Evaluation. To assess the realism of Infini-
HumanData, we conducted a user study comparing it against render-
ings from real human scans. The goal was to evaluate whether users
could distinguish our generated avatars from those based on actual
3D scan data. Participants were presented with image pairs: one
image rendered from a real scan, and the other randomly sampled
from InfiniHumanData. For each pair, users were asked to select
the more realistic image, or choose “both” if they could not tell
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the difference. Across all trials, real scan renderings received 746
votes, while InfiniHumanData images received 765 votes. The small
difference in votes indicates that our InfiniHumanData achieves a
high degree of visual realism, closely matching the appearance of
scans.

4.3 Fine-grained Controllability
4.3.1 Precise Clothing Control. As shown in Fig. 6, Gen-HRes can
generate avatars with high fidelity to the input clothing images.
By fixing the initial Gaussian noise, we can generate the same sub-
ject wearing different garments, preserving identity across try-on
results. This demonstrates strong, identity-preserving clothing con-
trollability.

4.3.2 Precise Pose and Shape Control. As illustrated in Fig. 7, Gen-
HRes accurately follows the body shape and pose specified by the
SMPL condition, faithfully transferring to the generated avatar.

4.3.3 Precise Text-based Generation and Editing. Gen-HRes enables
control over high-level human attributes, such as ethnicity, age,
and gender, all through text input (see Fig. 5). More importantly, it
supports fine-grained text-based editing while maintaining identity
consistency. As shown in Fig. 7, we generate the same subject with
different accessories, such as stockings, scarves, or sunglasses.

4.4 Application
4.4.1 TryOn from Photographs. Our Instruct-Virtual-TryOff module
demonstrates strong generalization: it can extract clean garment
images directly from real-world photographs. As shown in Fig. 10,
we extract clothing assets from photo captures and generate corre-
sponding avatars with user-specified text controls.

4.4.2 Re-animation. Leveraging the underlying SMPL parametric
body, our generated 3D avatars can be reanimated using SMPL mo-
tion data by barycentric interpolation of SMPL skinning weights
onto the generated mesh surface. See Fig. 13 for re-animation exam-
ples.

4.4.3 Figurine Fabrication. Gen-HRes produces high-quality, wa-
tertight 3D meshes, enabling direct 3D printing of physical figurines.
The printed figurines are physically robust and can stand indepen-
dently, as shown in Fig. 13, demonstrating the real-world physical
compatibility [Guo et al. 2024] of generated avatars.

4.5 Ablation Study
We qualitatively ablate different design choices, showcasing the
importance of orthographic MVD (Sec. 3.1F, Fig. 15), generating
scan-like images (Sec. 3.1B, Figs. 15, 16), additional SMPL fitting
(Sec. 3.1E, Fig. 14), and tolerance to inaccurate SMPL for children
generation (Fig. 14). Please refer to individual figures for examples.

5 Limitations and Future Works
Although our Gen-HRes can perform high-fidelity generation, it
is still slower than the end-to-end 3D generation pipeline, Gen-
Schnell. However, Gen-Schnell cannot generate faithful details such
as face because of the low-resolution (256×256) of pretrained MV-
Dream. Due to limited training resources, we cannot directly train

a higher-resolution Gen-Schnell. However, we publicly release all
high-resolution (768×768) InfiniHumanData with multi-modal la-
bels. Future works can consider training a high-resolution text-
based 3D-GS model, which achieves fast and high-quality end-to-
end multi-modal avatar generation.
As shown in Fig. 9, our pipeline can generate famous people

by names. However, GPT-4o refuses to identify unmatched sam-
ples because of privacy issues. Future works may adopt a different
vision-language model to include famous names in InfiniHuman-
Data. Moreover, our Gen-HRes adopts multi-view mesh carving to
obtain textured mesh from orthographic views, which can cause
texture artifacts in self-occluded parts of the avatar. Future works
may consider a data-driven approach for the mesh reconstruction
from multi-view images.

6 Conclusion
In this work, we present InfiniHuman, a novel framework for realis-
tic and highly controllable 3D avatar generation. To overcome the
fundamental challenge of scarce and expensive annotated human
data, we developed a fully automated data generation framework
that repurposes multiple pretrained foundation models. This enables
the creation of InfiniHumanData, a large-scale, richly annotated
dataset with 111K diverse identities and comprehensive control sig-
nals. Building on this foundation, our InfiniHumanGen framework
delivers rapid, high-fidelity avatar synthesis with unprecedented
fine-grained control, enabling users to specify appearance, shape,
pose, and clothing through intuitive multi-modal inputs. Exten-
sive experiments demonstrate that InfiniHuman not only outper-
forms prior methods in visual quality and speed, but also sets a new
standard for precise, attribute-level controllability in 3D human
generation. Importantly, our approach democratizes high-quality
avatar creation via an accessible and scalable solution. To support
further research and broad adoption, we will publicly release Infini-
HumanData, InfiniHumanGen, and our automatic data generation
pipeline, empowering the community to create unlimited, realistic,
and diverse 3D humans with full user control.
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“White male, 70–80, fair skin, white wavy hair, 
thick mustache, neutral expression, dark brown 

suit, white dress shirt, black shoes.”
(Sec. 4.1.2)

Monocular Body Fitting: 
Shape estimation 
and Refinement

InfiniHuman-1-to-3: 
High-resolution

multiview Hallucination

Text-to-Desired-Image: 
Orthographic “scan-like” 

image generation

Virtual-Tryoff: 
Clothing asset images 

generation

GPT-4o: 
plausible clothing asset 

image selection

GPT-4o: 
human description generation & 
multi-granularity reformatting

“Fair-skinned white male, 70–80, white hair, brown 
suit, white shirt, black shoes.”

…
“Older white man, fair skin, brown suit, white shirt.”

…
“Older man, brown suit.”

OpenPose 2D  joints

2D Joints projected 
from SMPLNLF Estimated SMPL High-Resolution Multiview Body and Head ImagesVToff CandidatesCloth Image

(Sec. 4.1.1)

(Sec. 4.1.3)

(Sec. 4.1.4) (Sec. 4.2)

(Sec. 4.1.5)

Misalignment of 
Initial SMPL Generate Head View

Inaccuracy SMPL 
of children

Generated Multi-view 
Images for children
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“White male, 70–80, fair skin, white wavy hair, 
thick mustache, neutral expression, dark brown 

suit, white dress shirt, black shoes.”
(Sec. 4.1.2)

Monocular Body Fitting: 
Shape estimation 
and Refinement

InfiniHuman-1-to-3: 
High-resolution

multiview Hallucination

Text-to-Desired-Image: 
Orthographic “scan-like” 

image generation

Virtual-Tryoff: 
Clothing asset images 

generation

GPT-4o: 
plausible clothing asset 

image selection

GPT-4o: 
human description generation & 
multi-granularity reformatting

“Fair-skinned white male, 70–80, white hair, brown 
suit, white shirt, black shoes.”

…
“Older white man, fair skin, brown suit, white shirt.”

…
“Older man, brown suit.”

OpenPose 2D  joints

2D Joints projected 
from SMPLNLF Estimated SMPL High-Resolution Multiview Body and Head ImagesVToff CandidatesCloth Image

(Sec. 4.1.1)

(Sec. 4.1.3)

(Sec. 4.1.4) (Sec. 4.2)

(Sec. 4.1.5)

Misalignment of 
Initial SMPL

Generate Head View

Orthographic: Row-wise Attention

Generated Multi-view 
Images for children

Perspective: Not on same row, needs full attention org. FLUX Generated Multi-views

complex lighting
cannot undo 

complex lighting

Fig. 15. Orthographic and Perspective in Multi-View Attention (left). Org.
FLUX gives complex lighting, degrading multi-view generation (right).
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Fig. 16. Our finetuned FLUX can generate desired images from text prompt
with orthographic view and uniform lighting, similar to the scan rendering.
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