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Fig. 1. Given a single monocular RGB image containing a human in a complex environment, PhySIC reconstructs metrically aligned 3D human and scene

geometries as well as a dense vertex-level contact map. Our method jointly optimizes human pose, scene geometry, and global scale to produce a physically
plausible human-scene pair, accurately capturing contact and interactions such as sitting and foot-floor adherence, even in the presence of occlusions. Image.

Reconstructing metrically accurate humans and their surrounding scenes
from a single image is crucial for virtual reality, robotics, and comprehensive
3D scene understanding. However, existing methods struggle with depth
ambiguity, occlusions, and physically inconsistent contacts. To address these
challenges, we introduce PhySIC, a unified framework for physically plausi-
ble Human-Scene Interaction and Contact reconstruction. PhySIC recovers
metrically consistent SMPL-X human meshes, dense scene surfaces, and
vertex-level contact maps within a shared coordinate frame, all from a single
RGB image. Starting from coarse monocular depth and parametric body esti-
mates, PhySIC performs occlusion-aware inpainting, fuses visible depth with
unscaled geometry for a robust initial metric scene scaffold, and synthesizes
missing support surfaces like floors. A confidence-weighted optimization
subsequently refines body pose, camera parameters, and global scale by
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jointly enforcing depth alignment, contact priors, interpenetration avoid-
ance, and 2D reprojection consistency. Explicit occlusion masking safeguards
invisible body regions against implausible configurations. PhySIC is highly
efficient, requiring only 9 seconds for a joint human-scene optimization
and less than 27 seconds for end-to-end reconstruction process. Moreover,
the framework naturally handles multiple humans, enabling reconstruc-
tion of diverse human scene interactions. Empirically, PhySIC substantially
outperforms single-image baselines, reducing mean per-vertex scene error
from 641 mm to 227 mm, halving the pose-aligned mean per-joint posi-
tion error (PA-MPJPE) to 42 mm, and improving contact F1-score from
0.09 to 0.51. Qualitative results demonstrate that PhySIC yields realistic
foot-floor interactions, natural seating postures, and plausible reconstruc-
tions of heavily occluded furniture. By converting a single image into a
physically plausible 3D human-scene pair, PhySIC advances accessible and
scalable 3D scene understanding. Our implementation is publicly available
at https://yuxuan-xue.com/physic.
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understanding; Machine learning approaches.
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1 Introduction

Holistic 3D understanding of humans and their surrounding environ-
ments is essential for emerging technologies such as embodied Al,
sports analytics, and augmented reality. These applications require
precise scene geometry, accurate localization of humans within
scenes, and coherent ground contact estimation. Existing methods,
however, usually consider either only static scenes without human
[Chen et al. 2019], or only human pose estimation assuming given
3D scene [Hassan et al. 2019a]. Recent method HolisticMesh [Weng
and Yeung 2021] can predict both scene and human from single
RGB image. Nevertheless, it is limited to a single human interacting
with specific indoor furniture categories, which does not scale up to
arbitrary scene types. While more recent approaches like HSR [Xue
et al. 2024] and HSfM [Miiller et al. 2024] achieve holistic human-
scene reconstruction, they require video input or multi-view images
respectively, limiting their applicability to single-image scenarios.

However, having a general method that can handle diverse scene
types and an arbitrary number of humans interacting with a scene
is very challenging. The model needs to reason about different
scene geometries, intricate human-scene contacts under depth-scale
ambiguity, occlusion to both human poses and scene geometry, all
from a single RGB image while being fast for practical applications.

Our idea to address these challenges is to simultaneously reason
about human and scene, leveraging strong geometry priors from
foundation models. During interaction, the scene physically limits
possible human poses and human pose provides crucial cues for
estimating scene geometry and scale. Based on this observation, we
propose PhySIC, PhySically plausible human scene Interaction and
Contacts from single RGB image. Starting from coarse monocular
depth and initial parametric body estimates, our method jointly
optimizes these components through an objective that harmonizes
reliable depth alignment, realistic contact encouragement, interpene-
tration avoidance, and 2D reprojection consistency, yielding coherent
3D human-scene reconstruction. In essence, PhySIC transforms a
single RGB image into: (i) a metrically scaled SMPL-X human mesh,
(ii) a comprehensive scene representation including dense surfaces
and essential support structures like floors, and (iii) a vertex-level
dense contact map within a shared metric coordinate system. Our
framework is highly efficient and can process one image in less than
27 seconds, making it possible to transform everyday images into
physically consistent 3D human-scene pairs. This paves the way for
scalable single-image 3D understanding.

We evaluated PhySIC on the PROX [Hassan et al. 2019a] and
RICH [Huang et al. 2022] datasets. Results show that our method
significantly outperforms previous SOTA, HolisticMesh [Weng and
Yeung 2021]: on PROX dataset, our method improves the mean joint
error of human pose from 77mm to 42mm and contact F1 score from
0.39 to 0.51. Experiments on diverse internet images demonstrate
the superior applicability of our approach to various interaction and
scene types. Our contributions are summarized as follows:

e We propose PhySIC, the first metric-scale human-scene recon-
struction method that can handle multiple humans, diverse
scene and interaction types.
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e We introduce a robust initialization strategy and occlusion-
aware joint optimization, providing valuable insights for hu-
man scene reconstruction.

o Our highly efficient reconstruction pipeline will be publicly
released, democratizing human scene reconstruction and in-
teraction data collection.

2 Related work
2.1 Single View to 3D Human

Reconstructing the shape and pose of 3D humans from monocular
images has seen significant advances, particularly with parametric
models such as SMPL [Loper et al. 2015] and its extensions to SMPL-
X [Pavlakos et al. 2019], which enables expressive full-body estima-
tion including hands and face. Early methods like SMPLify [Bogo
et al. 2016] optimized body parameters to fit 2D joint detections.
Subsequent deep learning methods, including HMR [Kanazawa et al.
2018], SPIN [Kolotouros et al. 2019], and PARE [Kocabas et al. 2021]
introduced end-to-end regression and attention mechanisms to im-
prove robustness to occlusion and truncation. WHAM [Shin et al.
2024] and TRAM [Wang et al. 2024a] combine human mesh recovery
with SLAM-based camera tracking, enabling accurate global local-
ization of SMPL bodies in world coordinates from monocular video.
Recently, large-scale learning-based models such as NLF [Sarandi
and Pons-Moll 2024] leverage over 25 million annotated frames to
directly regress both SMPL-X parameters and global position from a
single image, achieving state-of-the-art generalization and accuracy
across diverse scenes and poses. Despite these advances, existing
methods often lack explicit reasoning about physical interaction
or consistency with the surrounding 3D scene, leading to floating,
misaligned, or physically implausible human reconstructions. Our
work addresses these issues by enabling metrically aligned, physi-
cally plausible human recovery that is explicitly consistent with the
reconstructed scene.

2.2 Single View to 3D Scene

Early methods for monocular 3D scene reconstruction leveraged
geometric and semantic priors to recover layouts, object placements,
and meshes from a single RGB image. Notable among these is To-
tal3D [Nie et al. 2020], which jointly infers room layout and object
pose. Mesh R-CNN [Gkioxari et al. 2019] and MonoScene [Cao
and de Charette 2022] further advance object-centric mesh pre-
diction and semantic scene completion. Recent breakthroughs in
monocular depth estimation, such as ZoeDepth [Bhat et al. 2023],
Metric3D [Hu et al. 2024], and DepthPro [Bochkovskii et al. 2024],
employ large-scale pretraining and transformers to predict sharp,
scale-consistent depth, enabling realistic metric point cloud extrac-
tion. Gen3DSR [Ardelean et al. 2025] builds on these estimators with
category-specific object reconstruction, but omits human modeling
and thus cannot reason about physical contact or interaction. In
contrast, our method leverages state-of-the-art depth estimation to-
gether with explicit human modeling, enabling physically plausible,
metrically aligned human-scene reconstruction from a single image,
beyond the capabilities of prior object- or scene-centric approaches.
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Table 1. Comparison between existing human-scene reconstruction meth-
ods and ours. Our method can handle multi-human interaction in both
indoors and outdoors, and predicts the full scene at much faster speed.

Method Multi-human  Scene types RGB input only ~ Output  Runtime
PROX X Indoor X Objects 73 sec.
Mover X Indoor X Objects 30 min.
HolisticMesh X Indoor v Objects 5 min.
Ours v In+Outdoor v Full scene 27 sec.

2.3 3D Human-Scene Interaction

Modeling and reconstructing plausible human-scene interactions
is central to scene understanding. Early benchmarks addressed in-
teraction detection [Liu et al. 2020], generation [Savva et al. 2016],
and pose refinement [Hassan et al. 2019b] with scene constraints.
PROX [Hassan et al. 2019a] introduced interpenetration and contact
penalties but assumes access to static scene scans. In contrast, our
method reconstructs metric-scale scenes from a single RGB image.
Several approaches infer scene structure from human motion [Li
et al. 2024; Nie et al. 2021; Yi et al. 2022], while large-scale capture
works such as EgoBody [Zhang et al. 2022] and HPS [Guzov et al.
2021] provide detailed multi-person and metric pose data using
wearable sensors, though they require specialized hardware and do
not address single-image reconstruction.

Dynamic tracking and contact estimation approaches, such as
CHORE [Xie et al. 2022], InterTrack [Xie et al. 2025], and DECO [Tri-
pathi et al. 2023], can reconstruct articulated humans and contacts,
but often rely on incomplete scene geometry. Generative models
like ParaHome [Kim et al. 2024] simulate diverse 3D human-object
interactions, yet focus on activity synthesis rather than image-based
reconstruction. Placement-focused works (e.g., POSA [Hassan et al.
2021], PLACE [Zhang et al. 2020], Putting People in Scenes [Li et al.
2019]) leverage statistical priors, but typically lack dense, metri-
cally accurate scene recovery. Recent methods in holistic recon-
struction, such as RICH [Huang et al. 2022], HSR [Xue et al. 2024],
HolisticMesh [Weng and Yeung 2021], and the work by Biswas et
al. [Biswas et al. 2023] move toward integrated scene understanding
but often require controlled environments. In contrast, our method
reconstructs metrically accurate, physically plausible humans and
diverse scenes with dense contact reasoning directly from a single
image, enabling multi-human and in-the-wild scenarios (see Tab. 1).

Our work is most closely related to HSfM [Miuller et al. 2024],
which reconstructs 3D human-scenes from uncalibrated multi-view
images using joint optimization. To our knowledge, PhySIC is the
first method to reconstruct both 3D human-scenes and their inter-
actions from a single monocular image: a particularly challenging
task due to monocular ambiguity and severe occlusions, yet highly
practical given its applicability to internet images. Several additional
technical design choices further differentiate PhySIC from HSfM;
Please refer to our supplementary material for further details.

3  Method

Given a single RGB image, our method PhySIC predicts metric-scale
dense scene point clouds and 3D human mesh with accurate vertex-
level contact maps. This is a highly complex problem which requires
accurate reasoning of sophisticated human poses and diverse scene

geometries under heavy human-scene occlusions. We decompose
this problem into separate metric-scale scene estimation (Sec. 3.1)
and human reconstruction with alignment to the scene (Sec. 3.2).
Human and scene are inherently constrained by each other, which
we leverage for a joint optimization to obtain physically plausible
human-scene contacts (Sec. 3.3). An overview of our method can be
found in Figure 2.

For notational simplicity, we explain our method for single human
interaction with scene, but our approach seamlessly handles multi-
ple humans. Specifically, given input image I € REXWX3 physiC
outputs scene point map Ps and human mesh vertices ¥, € RN>3
using the SMPL-X body model [Pavlakos et al. 2019].

3.1 Stage 1: Metric-Scale Scene with Detailed Geometry

3.1.1 Scene image inpainting. From monocular image, the human
can heavily occlude the background scene, which leads to missing
regions if one simply ignores the human when reconstructing the
scene, causing false-negative interactions. Instead, we first inpaint
the scene to fill in the missing regions and then run scene recon-
struction for the complete scene, as shown in Fig. 2. Specifically, we
use SAM2 [Ravi et al. 2024] to obtain the human mask and adopt
OmniEraser [Wei et al. 2025] to inpaint the human region, yielding
an image J; with unobstructed view of the scene.

3.1.2  Metric-scale scene points. Our goal is to obtain accurate metric-
scale scene points from an image. Existing depth estimators like
DepthPro [Bochkovskii et al. 2024] can predict accurate metric-scale
depth, however, lack detailed geometry. On the other hand, some
models such as MoGe [Wang et al. 2024b] can capture fine-grained
details, but the results reside in relative space. We leverage the best
of both worlds to obtain metric scene scale with accurate and de-
tailed geometry. Specifically, using the inpainted scene image I,
we first obtain metric depth map Ds from DepthPro and unscaled
relative point maps P from MoGe. Since MoGe prediction is pixel-
aligned, we can align the point maps SDSrel with metric depth D by
optimizing scale s and translation t:

~ 2
(s*,t%) = arg min ‘(s prel ) - ﬁ_l(@S,KD)HZ, )

s,t,
where 77! is the back-projection function and intrinsic Ky is pre-
dicted by DepthPro. We optimize only the depth shift in t, and solve
this using RANSAC. The metric-scale point-map P can then be
obtained by: Ps = s* - Prel + t.

3.1.3  Ground plane fitting. The point map Py captures accurate
local geometry, but can suffer from missing or unreliable floor ge-
ometry, which is important for precise human-scene interaction. To
this end, we fit a plane to the floor points using normal constraints.
Specifically, we adopt SAM2 to obtain a 2D mask of the floor, which
is used to segment 3D floor points from Ps. We then use RANSAC
to fit a plane robustly to the floor points, aligning both normals
and positions. We estimate the normal of each point using its two
immediate neighboring points defined in a 2D pixel grid.

3.1.4  Combined scene points. We obtain additional floor points ¢
by sampling a 2D grid of points on the plane within the extents of
the scene. The final 3D scene, as our initialization for the next step,
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Stage 1

Unobstructed scene image
|

Unscaled detailed
geometry

Align + normal

MoGe based floor fit
Metric depth
\ DepthPro
Stage 2 | ==
Align
MoGe

CamHMR f?y
|

Input RGB

Metric-scale scene
with detailed geometry

Human mesh & scene
without contact

Stage 3

Predicted contacts

1
Enforce contacts

Avoid penetration

Joint optimization

P Accurate human,
scene, and contact

Fig. 2. Method overview. Given a single RGB image, we obtain accurate human, scene and contact reconstruction in 3D. We first obtain a complete metric
scale scene with detailed geometry (Stage 1, Sec. 3.1) and initialize human mesh which roughly aligns with the scene without contacts (Stage 2, Sec. 3.2). We
then jointly optimize human and scene to satisfy contact constraints while avoiding penetrations (Stage 3, Sec. 3.3). Image from Unsplash.

is formed by the union of the refined scene point cloud s and the
synthesized floor plane points # -

Pl =P U P @)

Note that the final scene points s come mainly from MoGe,
while the initial camera used in Eq. (1) comes from DepthPro. To
ensure better alignment, we recalculate the camera intrinsic for
P;. Let (u,v) be a 2D pixel and (X, Y, Z) be its corresponding 3D
point from 735' , we assume centered principal point [Patel and Black
2024] and derive potential focal lengths: fi(u,0) = (u — W/ 2)}%
and fy(u,0) = (v - H/Z)% The final focal lengths, f; and fy, are
robustly set to the median of these respective values. This new
intrinsic matrix K is used for all subsequent camera projections.

3.2 Stage 2: Human Reconstruction and Alignment

The previous section masks out the human and only considers the
scene. We now reconstruct the human and align it with the predicted
scene point cloud #/. This consists of two steps: 1) obtain human
points Py, aligned with scene points, and 2) estimate human mesh
aligned with the human points P, i.e. the underlying scene P.

3.2.1 Metric-scale human points. . From the original input image
I, we use MoGe to predlct an unscaled point cloud 7);,+s, which
contains human points Ph and surrounding scene points Ps. We
then align this to metric-scale scene points P/ by optimizing a scale
and depth shift, similar to Eq. (1). Note that we use the human
mask to remove P}, from P}, when performing the ahgnment We
then apply the optimized scale and shift to human points %4, thus
aligning them with the metric-scale scene, denoted as #,.
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3.2.2  Human mesh estimation. . To obtain semantically meaningful
contact vertices, we use SMPL-X [Pavlakos et al. 2019] to represent
the human. We denote H as the SMPL-X model which takes body
shape B, hand and full body poses 6}, 0, and global translation
t, as input, and outputs the human vertices Vy, = H(B, 0y, 0, tp,).
The initial SMPL-X vertices V}, are obtained by fusing SMPL [Loper
et al. 2015] prediction from CameraHMR [Patel and Black 2024]
and hand pose from WiLor [Potamias et al. 2025]. Specifically, we
fit SMPL-X into the SMPL mesh predicted by CameraHMR using
SMPLFitter [Sarandi and Pons-Moll 2024] and replace the hand
parameters with the hand pose predicted by WiLor. This initial
estimation does not precisely align with the input image and metric-
scale scene, which we address next.

3.2.3  Metric-scale human mesh. . We first optimize the global hu-
man translation ¢, to improve the pixel-alignment of the estimated
SMPL-X vertices using 2D joint projection loss:

Liza = H(”(J((Vh(th),K) - ZD)“; 3)

where J : RN*3 5 R/*3 regresses the 3D body keypoints and
]A}%D are the 2D keypoints predicted by ViTPose [Xu et al. 2022].
We then align the optimized human vertices with the metric-scale
human points P, using the Chamfer distance between camera-
facing vertices V. and human points $p:

Lalign = Aj2dLj2d + AqL4, where 4
: 2 : 2
Lg= ), minlv=plf+ > minp-vi5. ()
ve%fp h PEPhV of

We select camera-facing vertices V. C V}, as the vertices whose
surface normals are at an angle deviating less than 70 degrees from
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the camera view direction. This is crucial to avoid aligning the
backside vertices with the human points. Note here that we only
optimize the global translation ¢, parameter.

3.3 Stage 3: Joint Human-Scene Optimization

Even though the human vertices V}, and metric-scale scene points
P, which were obtained from previous steps, reside in the same
metric-scale coordinate, they are predicted separately. Hence, phys-
ical plausibility is not guaranteed. We further enhance the plausi-
bility by enforcing additional constraints between the human and
the scene (Fig. 2, Stage 3). To this end, we formulate a joint opti-
mization objective that adapts principles of contact attraction and
interpenetration avoidance [Hassan et al. 2019a; Yi et al. 2022] to
our setting of single-image reconstruction with pointmaps. Thus,
we additionally introduce the contact and interpenetration loss,
together with regularization terms to jointly optimize the human
parameters 0y, 0}, B, t, and a scene scale parameter sgc:

Liotal = AjzdLjed + AdLd + AcLe + AiLi + AregLreg. (6)

Let Ps = ssc P4 be the scaled scene points; we explain the contact,
interpenetration and regularization terms next. The loss weights A,
are detailed in the supplementary.

3.3.1 Contact loss L.. This encourages the human vertices in con-
tact with the scene to be close to the scene points Ps. We use

DECO [Tripathi et al. 2023], which predicts the human contact

vertices Veon and minimize their distance to the closest scene points.
During optimization, we use an active-contact subset by re-evaluating
nearest scene distances each iteration and only applying L. to ver-
tices within €, suppressing spurious long-range contacts:

o= 3 (smin p0tv=pI) )1 (i v pi <o) )
eV pEPs pEPs

where p is an adaptive robust loss function [Barron 2019] and the
indicator function I(-) ensures the loss term is only active when
the distance to the nearest scene point is less than a threshold e.
This hinders penalizing distant false-positive contact predictions or
interactions with outlier scene points.

3.3.2  Occlusion aware interpenetration loss L;. It prevents the hu-
man mesh V}, from unnaturally penetrating the scene geometry
Ps. We leverage the estimated per-point normal of P and penalize
points lying opposite to the normal direction:

L= >

p (mi;; ||v—p||§)1<np (WP <0.  ®
ve Vi\Voce pes

Importantly, we exclude human vertices Vo occluded by surround-
ing objects or by itself. Specifically, we consider human vertices
whose 2D projections lie outside the human mask as occluded by
object. We divide the vertices into different body parts and consider
a part as self-occluded if 30% of its vertices are occluded by other
body parts. This prevents the occluded body parts from moving
towards unnatural poses due to the penetration loss, as no other
signal, like 2D keypoints, is available to regularize the optimization.

3.3.3  Regularization terms Lyeg. To ensure the optimized human
mesh V), does not deviate excessively from initial estimates, we
apply a mesh regularization loss, treating the initial estimates as a
pose prior. This loss penalizes the L2 distance between the current
and initial mesh vertices in the root-relative space, constraining the
local body pose of the human, while allowing for large updates in
global translation of the mesh. We increase the weight of the regular-
ization loss for occluded vertices V. since the initial estimates are
our best guess for unobserved parts of the human mesh. We further
weakly regularize the scene scale sg. and the human translation #;,
by preventing large deviations from their initial values.

3.3.4 Contact map extraction. Our joint optimization produces ac-
curate and physically plausible human-scene interactions, which
allows us to extract per-vertex contact maps based on proximity.
Each human mesh vertex v; € V}, is labeled as in-contact if its Eu-
clidean distance to the nearest point on the scene surface is less than
a predefined threshold e.. This process yields a binary contact mask
over the human mesh vertices, identifying regions of interaction.

3.3.5 Handling multiple humans. The method described above can
easily be extended to multiple humans by using another human
mask to perform human-scene alignment and joint optimization.
Specifically, we use SAM2 to obtain per-instance human masks. We
inpaint all humans simultaneously to obtain the scene, then align
each human mesh individually with the scene following Sec. 3.2.
We then perform one joint optimization between the underlying
scene and all humans using Eq. (6).

4  Experiments
4.1 Implementation Details

We implement our optimization framework using PyTorch [Paszke
et al. 2019] and batched 3D geometry operations to handle multiple
humans with PyTorch3D [Ravi et al. 2020]. During initialization, we
perform aggressive outlier point removal using mean k-NN distance
to ensure clean scene geometry, where k is adaptively set based on
image resolution. For the first optimization (Eq. 3), we perform 30
iterations of gradient descent with Adam [Kingma and Ba 2017].
For the second optimization (Eq. 5), we use two iterations of L-
BFGS [Liu and Nocedal 1989]. Our final optimization (Eq. 6) utilizes
100 iterations of gradient descent with Adam. Both gradient descents
use a learning rate of 1le-2, and the L-BFGS optimizer uses a unit
learning rate. While the camera-facing mask V. ; remains stable
throughout optimization, the self-occlusion state can vary due to
pose optimization. Hence, we update V. every 30 iterations of the
final gradient descent. For more details, please refer supplementary.

A frequent operation used in L. and L; is nearest-neighbor search.
Despite the varying scene scale during optimization, we leverage the
scale-invariant nature of the nearest neighborhood structure to pre-
compute a 1283 grid of nearest-scene-points, and transform query
points to the initial scale. This results in a 15-20% overall speedup,
compared to a brute-force implementation. On a NVIDIA H100 GPU,
our optimization takes 9 seconds for a 480p image and 12 seconds
for a 720p image, yielding end-to-end human-scene reconstruction
times of 27 seconds and 36 seconds respectively.
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Input

HolisticMesh

Fig. 3. Qualitative results on PROX dataset (row 1) and internet images (row 2-3). We compare the output of PhySIC with PROX [Hassan et al. 2019a]
and HolisticMesh [Weng and Yeung 2021]. Note that we run PROX with our estimated scene on internet images as there is no scene scan available. Both
PROX and HolisticMesh rely on predefined contact maps, hence are not robust to complex human poses and interactions. Our method reconstructs 3D scene
and adapts contact optimization based on input, leading to more coherent reconstruction. Please refer Fig. 5 and Fig. 7 for more results.

Table 2. Quantitative Comparison on PROX and RICH. Our method
outputs better local pose (PA-MPJPE) and more accurate contacts. Although
HolisticMesh shows better humber in MPJPE on PROX, we found it is
unreliable and cannot robustly reconstruct on in-the-wild data (See Fig. 3).

Human Pose Metrics |

PA-MPJPE  MPJPE  MPVPE Precision Recall F1 score

Method Contact Metrics T

PROX Quantitative Dataset

CameraHMR 42.35 997.49 996.20 - - -
DECO - - - 0.406 0.349 0.376
PROX 73.31 266.50 266.00 0.260 0.108 0.152
HolisticMesh 77.04 202.80 191.70 0.373 0.412 0.391
Ours 41.99 230.26 227.19 0.508 0.514 0.511
RICH-100 Dataset

PROX 120.24 706.19 692.07 0.040 0.250 0.069
Ours 46.50 616.27 617.33 0.310 0.689  0.428

4.2 Evaluation Protocol

We evaluate PhySIC against prior arts on the PROX [Hassan et al.
2019b] and RICH [Huang et al. 2022] datasets, both containing hu-
mans and static scene scans. The PROX dataset captures a single
subject interacting with various objects of a scene in an indoor set-
ting. In contrast, RICH includes videos of two scenes covering both
indoor and outdoor settings, each scene captured by 6-8 cameras,
resulting in ~ 125k frames, with high redundancy, which makes full
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evaluation expensive. Hence, we use all 178 images from PROX-
quantitative and randomly sample 100 images from RICH, covering
all possible cameras, activities and backgrounds. We further provide
qualitative results on the PiGraphs dataset [Savva et al. 2016], con-
taining videos of humans interacting with static scenes in indoor
environments. Finally, we collect a set of in-the-wild images from
the internet to show the generalizability of our approach.

We compare PhySIC with PROX [Hassan et al. 2019b] and Holis-
ticMesh [Weng and Yeung 2021], two state-of-the-art approaches
that jointly model human-scene interaction from monocular images.
While HolisticMesh estimates human-scenes from a single RGB im-
age, whereas PROX requires a static 3D scene scan for optimization.
To enable a fair comparison, and to evaluate PROX on RGB images,
we perform two modifications. First, we replace the static scene with
an unprojected depth map from DepthPro [Bochkovskii et al. 2024].
Further, we replace PROX’s pose prior VPoser [Pavlakos et al. 2019]
with SOTA CameraHMR. Specifically, we initialize and regularize
the pose optimization using CameraHMR [Patel and Black 2024].

Unlike HolisticMesh, which fits a single static scene to the entire
PROX-Quantitative sequence, our method relies only on a single
inpainted image from a frame without interactions with thin struc-
tures. This avoids the need for per-frame inpainting and allows us
to optimize the human and the scene independently at each frame,
without relying on sequence-level cues. Despite this lightweight
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design, our inpainting generalizes robustly and works well on in-
the-wild images directly, even without any sequence information.

4.3 Qualitative Analysis

4.3.1  Human-scene reconstruction. Fig. 3 presents qualitative re-
sults of human-scene reconstruction. In contrast to our method,
PROX lacks robust occlusion handling and an appropriate distance
threshold in its contact loss, resulting in inaccurate poses and mislo-
calization within the scene. While some interpenetration is expected
due to unmodeled scene deformations, PROX exhibits excessive
interpenetration beyond these expected discrepancies. Similarly,
HolisticMesh also suffers from noticeable interpenetration, and fails
to run on certain in-the-wild examples, highlighting limitations with
generalizability. In contrast, PhySIC’s robust occlusion handling and
refined distance thresholding for contacts leads to more accurate
poses, better localization, and significantly reduced interpenetration,
thereby successfully increasing robustness in complex scenes. For
additional results, please refer to Fig. 7 and supplementary.

4.3.2  Contact estimation. We show example comparison with con-
tact estimation method DECO [Tripathi et al. 2023] in Fig. 4. Our
joint optimization is guided by the contact estimation from DECO
which can be noisy. However, our approach robustly recovers ac-
curate human-scene interactions and further improves contacts,
especially in the intricate body parts such as feet and arms. Addi-
tional examples can be found in Fig. 6.

4.4  Quantitative Analysis

We quantitatively evaluate our method on both 3D human pose and
vertex-level contact metrics. For 3D human pose, we report the Mean
Per-Joint Position Error (MPJPE), the average euclidean distance be-
tween the camera-relative predicted and GT human joints. We also
use Procrustes Aligned MPJPE (PA-MPJPE) which computes MPJPE
after global alignment, effectively comparing the root-relative hu-
man pose. Additionaly, we report the Mean Per-Vertex Positon Error
(MPVPE), the average Euclidean distance between the predicted and
GT mesh vertices, which takes into account the predicted human
shape f. For the human-scene contact, we report standard classi-
fication metrics (precision, recall, F1 score), calculated using the
predicted and GT per-vertex contacts.

The results in Tab. 2 demonstrate that our approach achieves
state-of-the-art performance in both human pose and contact esti-
mation. Specifically on the PROX dataset, we significantly reduce
PA-MPJPE, by nearly half compared to the PROX and HolisticMesh,
even though both methods initialize from CameraHMR. Our method
consistently improves upon the state-of-the-art CameraHMR and
DECO across all pose and contact metrics. Our method also outper-
forms HolisticMesh in contact accuracy with a 40% improvement in
F1 score. Although HolisticMesh shows a marginally better MPJPE
and MPVPE on PROX, it performs poorly on non-PROX in-the-
wild images (Fig. 7), and suffers from severe interpenetration and
inaccurate local poses, as indicated by its PA-MPJPE.

On the RICH dataset, HolisticMesh could not be evaluated, as
it is trained only for indoor living environments occupied with
limited object categories, while RICH was captured both indoors and

Table 3. Ablating the impact of different loss terms on joint human-scene
optimization. Depth loss Ly is important to ensure good global alignment
(MPJPE) and occlusion-aware interpenetration loss L; improves local pose
accuracy (PA-MPJPE).

Human Pose Metrics | Contact Metrics T

Ablation
PA-MPJPE  MPJPE  MPVPE Precision Recall F1 score

Init. (CHMR) 42.35 997.49  996.20 - - -
Init. (DECO) - - - 0406 0349  0.376
Lyeg + LjZd 76.79 643.02 641.31 0.288 0.052 0.088
+L 71.22 637.50  635.98 0.397 0.250 0.307
+L; 69.22 639.16  637.62 0.394 0.228 0.289
+Lg 72.64 364.98 358.75 0.490 0.430 0.459
+ occ. aware L; 41.91 238.72  235.75 0.490 0.550 0.518

+ floor (full model) 41.99 230.26  227.19 0.508 0.514 0.511

outdoors, beyond HolisticMesh categories. Our method outperforms
PROX on both pose and contact metrics.

4.5 Ablation Study

We investigate the impact of different loss terms on our joint opti-
mization stage and report the results on PROX dataset. Starting from
the basic 2D joint reprojection loss Lj5q and regularization term,
we gradually add more losses defined in Eq. (6) to the optimization
process. We report the performance of our initialization approaches,
CameraHMR and DECO, and ablation results in Tab. 3. With just
Lreg + Ljzq4, the human pose metrics degrade compared to the initial
estimates. This is due to depth ambiguity in the monocular setting:
a perfect 2D fit does not imply accurate 3D pose. This necessitates
additional constraints from human-scene interaction losses (L. and
L;). However, since these losses are applied against nearest scene
points, they can misalign with the actual contact regions. To address
this, we also include a loss against the human points #},. The depth
alignment loss (+Ly) marks a crucial improvement in both pose
and contacts, due to improved localization of the human within the
scene, which ensures that L. and L; act on the correct scene regions
and thus become effective. Our occlusion-aware interpenetration
loss (L; with Vyce excluded) further then delivers the largest PA-
MPJPE gain (to 41.91) and achieves the best contact recall and F1
scores. Note that without the occlusion awareness, the local body
poses (PA-MPJPE) are even worse than the initialization. This is
because the occluded part can be overly penalized due to interpene-
tration without regularization from the input image, leading to large
deviations from correct body poses. Our experiments highlight the
significance of occlusion reasoning, which is consistent with the
prior works [Xie et al. 2023, 2025]. For detailed qualitative results,
please refer to supplementary.

5 Limitations and Future Works

While PhySIC advances the state of the art in physically plausible
human-scene reconstruction from a single image, several limita-
tions remain, highlighting directions for future research. (i) Image
inpainting. Our approach relies on state-of-the-art inpainting mod-
els [Wei et al. 2025] to reconstruct occluded scene regions. These
models are imperfect, particularly for thin or intricate structures,
leading to erased or deformed geometry. As inpainting methods
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Input DECO Ours

Fig. 4. Qualitative results for contact estimation. We compare our approach against the state-of-the-art image-based contact predictor, DECO [Tripathi
et al. 2023] in both lab and wild setting. Note how our method improves the nuanced contact on arms and feet. Please refer Fig. 6 for further examples.

improve, we expect direct benefits to our approach. (ii) Scene defor-
mations. We assume static, rigid scene geometry, which may not
hold for deformable objects such as cushions or clothing. Extending
PhySIC to handle non-rigid scene deformations could enable more
realistic human-scene interactions. (iii) Human-object interactions.
We focus on human-scene interactions and do not explicitly model
fine-grained interactions with small objects, such as grasping or
pushing. Future work could integrate off-the-shelf object mesh es-
timators, align them with reconstructed depth maps, and leverage
additional 2D object supervision. (iv) Flat floor assumption. PhySIC
assumes that floors are planar to simplify occlusion reasoning and
contact estimation. This assumption generally holds, but can fail
when no floor points are detected or RANSAC fails to find con-
sensus. In such cases, we skip floor sampling, which may result in
false-negative contacts. Maturity of holistic 3D scene reconstruction
methods could address this limitation [Roh et al. 2024].

6 Conclusion

We present PhySIC, a framework for physically plausible human-
scene interaction and contact reconstruction from a monocular
RGB image. By jointly optimizing metrically scaled SMPL-X hu-
man meshes and detailed 3D scene geometry, PhySIC enables re-
construction of coherent, physically realistic human-scene pairs in
diverse environments. Our method introduces robust initialization
strategies, combining metric depth and detailed relative geome-
try, occlusion-aware refinement, and efficient multi-term optimiza-
tion that enforces contact, interpenetration, and depth alignment.
Extensive experiments on challenging benchmarks demonstrate
that PhySIC significantly outperforms prior work in both pose and
contact metrics, and generalizes well to multi-human and in-the-
wild scenarios. PhySIC provides a scalable, accessible step towards
holistic, single-image 3D human-centric scene understanding. We

, Vol. 1, No. 1, Article . Publication date: October 2025.

anticipate that continued progress in inpainting, foundation geom-
etry models, and interaction reasoning will further enhance the
capabilities and generality of our approach. We will release our
code and evaluation scripts to support future research and practical
applications.
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Input Reconstructed Human Scene

Fig. 5. Additional qualitative results for in-the-wild images. Please refer to Supp. Mat. for more results.
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Input DECO Ours

Fig. 6. Qualitative results for contact estimation. We compare our approach against the state-of-the-art image-based contact predictor, DECO.

HolisticMesh v __Ours

Failed to Run.

Fig. 7. Qualitative results on internet images. We compare the output of PhySIC with PROX and HolisticMesh. HolisticMesh fails to model scenes with
arbitrary surfaces since it estimates per-object geometry.
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